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Abstract

We point identify and estimate linear social network models without observing any

network links. The required data consist of many small networks of individuals, such

as classrooms or villages, with individuals that are each only observed once. We apply

our estimator to data from Tennessee�s Student/Teacher Achievement Ratio (STAR)

Project. Without observing the latent network in each classroom, we identify and

estimate peer and contextual e¤ects on students� performance in mathematics. We

�nd that peer e¤ects tend to be larger in bigger classes, and that increasing peer

e¤ects would signi�cantly improve students�average test scores in some classes.
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1 Introduction

In many social and economic environments, an individual�s behavior or outcome depends

on both his own characteristics and on the behavior and characteristics of other individuals.

Call such dependence between two individuals a link. A network consists of a group of

individuals who are potentially linked or connected. Links between individuals can take

either binary values indicating the presence or absence of a connection, or continuous values

(weights) indicating the strength of the connection. We refer to linked individuals as friends.

The structure of a social network is fully characterized by its adjacency matrix, which is a

square matrix that lists all links (continuous or discrete) among the group members.

One goal of econometric network models is the estimation of various social e¤ects based

on observed outcomes and characteristics of network members. These structural parameters

capture the e¤ects on each individual�s outcome of (i) the individual�s own characteristics

(direct e¤ects) and group characteristics (correlated e¤ects), (ii) the characteristics of friends

(contextual e¤ects) and (iii) the outcomes of friends (peer e¤ects).

Existing methods of point identifying and estimating these structural parameters require

either that the adjacency matrix be observed in the sample (as in, e.g., Bramoullé, Djeb-

bari and Fortin (2009)), parameterized (as in Rose (2017)) or as the linear-in-means model

described below, or that the reduced-form coe¢ cients that correspond to a �xed, unknown

network are already identi�ed (as in Blume, Brock, Durlauf and Jayaraman (2015) and de

Paula, Rasul and Souza (2020)). The usual way this latter requirement would be satis�ed

is by observing many repeated realizations of covariates and outcomes over a �xed unknown

network.

We provide su¢ cient conditions to point identify and estimate the structural parameters

in linear social network models when the adjacency matrix is unobserved, and where only a

single realization of covariates and outcomes in each network is observed. Our identi�cation

assumes that we observe outcomes and covariates for individuals in many small networks such

as classrooms or villages, but does not require any data on who is linked with whom within

each network. Since most surveys do not include link data, our results have widespread

potential applications.

For example, consider students who participated in the Student/Teacher Achievement

Ratio (STAR) Project. This data includes test scores and demographic information on each

student, and reports what class each student is in, but does not provide any link data, such

as which sets of children are friends or study partners within each class. Previous attempts

to estimate peer e¤ects with this data either assume a linear-in-means model where all

classmates are assumed to be linked to each other with equal weights, e.g., Boozer and

Cacciola (2001), or de�ne links as functions of observed covariates as in Rose (2017).
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While often assumed in practice, the linear-in-means assumption is very unlikely to hold

in many applications like classrooms, where peer and contextual e¤ects are more likely to

operate through actual friendships with varying strengths, instead of equal in�uence from

all group members. We also show how to use our identi�cation results to empirically test

the linear-in-means assumption. We reject this assumption in the STAR data.

1.1. The Model. Let yi 2 R and Xi 2 RK denote the outcome and exogenous covariates,
respectively, for an individual i. Each individual belongs to one of L groups, a.k.a. networks.

Assume there are nl individuals in each group l 2 f1; :::; Lg. Each group l has an unobserved
nl�nl adjacency matrix Gl, whose (i; j)-th component is either binary (equals 1 if i is linked

to j, and 0 otherwise), or is a generic number (a weight) indicating the strength of the link

between i and j.1

The researcher only observes yi and Xi for each individual i, and the identity of the

group that each individual i belongs to. The researcher does not observe the adjacency

matrices G1,...,GL. For example, suppose each group is an elementary school class, and each

Gl describes a network of friendships or study partners among the students in class l. The

researcher observes each student i�s test score yi and the student�s vector of demographic and

other characteristics Xi. The researcher also observes which class (i.e., group) each student

is in, but does not observe who is friends with whom, or who studies with whom, within each

class. Instead of observing or modeling the adjacency matrices of each group (i.e., class), we

only assume that there is an unknown distribution of latent adjacency matrices, from which

each group�s matrix Gl is drawn.

We assume a standard linear social network model:2

yl = ��+ �Glyl +Xl� +GlXl + "l, (1)

where yl and "l are nl � 1 vectors of outcomes and errors, respectively, � an nl � 1 vector
of ones, and Xl an nl �K matrix of covariates. Assume for now that the errors "l are i.i.d.

and uncorrelated with Xl (these conditions can be relaxed). Our asymptotics are that the

number of members nl of each network l is �xed, but the total number of networks L goes to

in�nity. Our goal is point identi�cation and estimation of structural parameters consisting

of the group e¤ect coe¢ cient � 2 R, the peer e¤ect � 2 R, the vector of individual direct
e¤ects � 2 RK , and the vector of contextual e¤ects  2 RK . We will later separate Xl

into individual-level e¤ects and group-level e¤ects, with an additional vector � of group-level

coe¢ cients.

1Links are typically assumed to be non-negative in network models, but we do not need to impose that

constraint.
2Note this linear model is far more general than linear-in-means. Linear-in-means is the very special case

where every o¤-diagonal element of Gl is the same number.
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If the adjacency matrix Gl were observed for each group l in the sample, then point

identi�cation and estimation of these parameters under general conditions would follow from

existing methods in the literature. For example, one could use the linear instrumental

variables estimator of Bramoullé, Djebbari and Fortin (2009), which uses data on friends of

friends, i.e., G2lXl, as instruments for endogenous regressors Glyl.

1.2. Intuition for Identi�cation and Estimation. To explain the intuition for our

identi�cation strategy, let us continue to use the example of students in a class. Begin by

making the simplifying assumption that all classes are the same size, having n students per

class (later, in Section 6.3, we describe multiple methods of generalizing our results to handle

variation in group sizes).

Equation (1) says that each element of yl (that is, each student�s test score) is a linear

function of the characteristics of that student, and of the test scores and characteristics of

that student�s friends. One could imagine trying to directly estimate these linear functions

by linear regressions. However, we don�t know who each student�s friends are. Moreover,

even if we did know, the test scores of friends are endogenous regressors. Without observing

the adjacency matrices, we can�t construct instruments for ones friend�s test scores, as in

Bramoullé, Djebbari and Fortin (2009).

So instead, consider estimating reduced-form regressions, where we solve equation (1) for

yl as a function of Xl and errors. In these regressions, each student�s test score is regressed

on all the characteristics of every child in that student�s class. This means estimating the

regression coe¢ cients in a system of n linear equations (one equation for each class mem-

ber), with each regression estimated using a sample of size L (the number of classes in the

sample). The coe¢ cients in these reduced-form regressions are all functions of the structural

parameters, and of the underlying distribution of adjacency matrices across classes. More

precisely, we show these reduced-form coe¢ cients, under our maintained assumptions, are

all functions of the structural parameters �, �, and , and of E (Ml) and E (MlGl), where

Ml � (I � �Gl)
�1; (2)

I denotes the identity matrix, and the expectations are over the unknown distribution of

random matrices Gl across all classes.

We establish su¢ cient conditions for identifying the structural parameters from these

reduced-form coe¢ cients. These identi�cation conditions are analogous to the traditional

rank and order conditions for identifying structural parameters in classical linear simulta-

neous equation systems (e.g., systems of linear supply and demand equations). However, a

complicating factor here, as compared to classical linear simultaneous systems, is the pres-

ence of many nuisance parameters, speci�cally, all the elements of the matrices E (Ml) and

E (MlGl).
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A key insight is that we do not need to observe or identify all of the adjacency matrices

G1,...,GL. For identifying the structural coe¢ cients �, �, and , the only features of the

network that matter are E (Ml) and E (MlGl). What then makes this identi�cation feasible

is these matrices a¤ect the reduced-form coe¢ cients of each covariate in Xi in the same way.

So having multiple covariates in the model provides identifying information regarding these

matrices. As a result, from the reduced-form coe¢ cients we can disentangle and identify

the structural social e¤ects, without observing the network, and without explicitly modeling

either network structure or network formation.

An attractive feature of our identi�cation strategy is that it is constructive, so the same

steps used for identi�cation can be replicated in data to obtain parameter estimates. Unlike

traditional indirect least squares for linear simultaneous equations (recovering structural

parameters from reduced-form estimates), our estimator requires a �rst step to estimate

intermediate parameters. These intermediate parameters depend on the structural social

e¤ects but not the distribution of latent matrices.

Another attractive feature of our estimator is that, unlike other estimators that deal with

unobserved networks, we do not need to either parameterize the networks, nor do we require

repeated observations of the network. Moreover, since we identify and estimate functions of

E (Ml) and E (MlGl), which are features of the distribution of adjacency matrices, we can

use our estimates to test some models of link formation, such as testing if the linear-in-means

model holds, or testing if links are determined randomly.

1.3. Classroom outcomes in Tennessee elementary schools. We apply our method
without link data to estimate the impact of social networks on the test performance of

elementary school students in the STAR data set mentioned above. For example, without

observing any data on the links between students, we identify the peer e¤ects coe¢ cient

�, and estimate it to be 0:85 in small classes and 0:92 in large classes. Both estimates are

statistically signi�cant. We also �nd that, ceteris paribus, increasing the magnitude of peer

e¤ects would result in improved average test scores in some classes.

Would it be worthwhile to institute policies that encourage students to form additional

links or friendships? Our results suggest that the impacts of such policies would be small,

and could even have negative e¤ects depending on class sizes. This is an example of a

counterfactual exercise we can perform that would be di¢ cult by other means with this

data. We also test and reject alternative model speci�cations, including the linear-in-means

model, and we also reject the random Poisson link formation model (also known as Erd½os-

Rényi (1959) networks).

The next section is a short literature review. It is followed by our formal model. We

then present our new identi�cation and estimation method for unobserved networks. Next,

we provide the empirical application and conclusions. Proofs, derivations, and Monte Carlo
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simulations are in the appendix.

2 Literature Review

Standard estimators of social interactions models, like Lee (2007), Bramoullé, Djebbari

and Fortin (2009), and Lin (2010) assume network links are reported in the data. One

popular model that does not require observing the network is the �linear-in-means�model.

This model simply assumes that everyone is equally linked to everyone else within groups.

So in that model, a simple network is assumed rather than observed.

An alternative to just assuming an unobserved network is to exploit alternative types of

network information. For example, one may use spatial data to estimate adjacency matrices,

assuming that Gl is a function of observed geographic distance or demographic di¤erence.

Examples are in Pinkse, Slade, and Brett (2002), LeSage and Pace (2009), Manresa (2016)

and Rose (2018).

Another possibility is to assume a model of network formation, and estimate the result-

ing, possibly endogenous, network along with the structural model parameters. An example

is an Erd½os-Rényi (1959) network, which assumes that there is a �xed probability p that any

element of Gl equals one versus zero. One might then estimate p along with structural pa-

rameters (we later show with our model that we can test the assumption of an Erd½os-Rényi

network, and we reject it in our application). More recently, Auerbach (2021) studies a re-

gression model where one covariate is an unknown function of a latent driver of the network

link. Other endogenous network formation models are Hsieh and Lee (2016), Goldsmith-

Pinkham and Imbens (2013), Hsieh, König, and Liu (2020), Hsieh, Lee and Boucher (2020),

and Johnsson and Moon (2021). Among them, Hsieh and Lee (2016) and Hsieh, Lee and

Boucher (2020) estimate social interaction models with endogenous network formation using

a class of exponential random graph models (ERGMs). Many of the results in this endoge-

nous network literature yield set rather than point identi�cation, or are analyzed under the

Bayesian framework.3

Another approach is to assume the researcher has additional information about the ef-

fects of the network, rather than additional information about its formation or structure.

For example, if a survey directly asks questions related to the value of peers�outcomes and

contextual e¤ects, e.g., about Glyl and GlXl, then the peer e¤ects might be estimated with-

out observing the network Gl itself. An example is Breza, Chandrasekhar, McCormick and

Pan (2020). Alternatively, Blume, Brock, Durlauf and Jayaraman (2015) provide identi�-

3While we obtain point identi�cation without making use of any speci�c model of network formation,

we do require a relatively strong exogeneity condition regarding network formation versus outcomes. See

Assumptions 2 and 3 below.
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cation results assuming that the reduced-form coe¢ cients of individual characteristics on

outcomes are already known to researchers. Obtaining these reduced-form coe¢ cients would

generally require many repeated observations of the same individuals in a �xed network,

or observations of many groups, each of which was known to have the exact same network

structure.4

Perhaps the closest result to ours is de Paula, Rasul and Souza (2020), who identify and

estimate a linear social network model where the network is completely unobserved, without

additional information about networks or outcomes as above. They show identi�cation

assuming a panel data structure where researchers observe outcomes across multiple periods

on a single �xed network. In their model, individual outcomes vary over time conditional

on covariates, because they are generated by random draws of unobserved errors in each

time period, while the unknown network structure is assumed constant over time. Given

many time periods (or fewer time periods and some sparsity assumptions), they propose a

consistent estimator for the social e¤ects.

The assumptions we require to deal with unobserved networks are motivated by a di¤erent

data structure than de Paula, Rasul and Souza (2020). While our methods could be applied

to their data, unlike them we do not require a panel structure with the network �xed over

time. Our method allows the unobserved network to vary across groups (e.g., classes or

villages), and so could be applied in a cross-sectional setting where the network varies across

groups within a single observed time period. Asymptotics in our case are de�ned in terms

of the number of groups (each of which only needs to be observed once) going to in�nity,

rather than number of repeated observations of a single group.

Our identi�cation argument also di¤ers qualitatively from de Paula, Rasul and Souza

(2020) in that ours is based on the relationship between the reduced-form impacts of multiple

individual characteristics on outcomes. Also, our identi�cation strategy is constructive, and

thus leads to a simple two-stage estimator that has a closed form, is easy to compute, and

attains standard parametric-rate consistency and asymptotic normality.

Our empirical application looks at peer e¤ects on students�academic performance. Other

linear models of peer e¤ects on student outcomes include Hauser, Pfa¤ermayr, Tappeiner and

Walde (2009), Calvó-Armengol, Patacchini and Zenou (2009), Lin (2010), Lee, Liu and Lin

(2010), Patacchini and Zenou (2012), and Boucher, Bramoullé, Djebbari and Fortin (2014).

A limitation of our model in equation (1) is that it assumes peer e¤ects � and contextual

4Blume , Brock, Durlauf and Jayaraman (2015) also consider a more general model where adjacency

matrices for peer e¤ects and for contextual e¤ects are di¤erent. They show how to identify structural

coe¢ cients using partial knowledge of both matrices (i.e., the complete set of individuals linked) and a priori

restrictions on the cardinality of these links. Whether their model can be identi�ed without such a priori

restrictions is an open question.
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e¤ects  operate through the same adjacency matrix Gl. This assumption is standard in

the literature whenever both peer and contextual e¤ects are included in a model. See, e.g.,

Lee (2007), Bramoullé, Djebbari and Fortin (2009), and de Paula Rasul and Souza (2020).

One paper that relaxes this assumption is Blume , Brock, Durlauf and Jayaraman (2015).

This assumption is generally imposed because it would be di¢ cult to distinguish from data

the extent to which any observed link applies to peer e¤ects versus to contextual e¤ects.

We are not aware of any data sets where such information has been collected. However,

since our identi�cation is intended precisely to cover situations where link data is not, or

cannot, be observed, it is possible that our methods could be extended to cover such models.

We discuss the possibility of extending our method to cover this case of multiple adjacency

matrices within each group in Appendix E.

We conclude this literature review by noting a deep connection between identi�cation of

linear network models and identi�cation of traditional structural systems of linear equations,

going back to the rank and order conditions described by Koopmans (1949) and the Cowles

foundation, and in more detail in Fisher (1966). First, consider the setting in de Paula,

Rasul and Souza (2020), which is equation (1), but simpli�ed by having Gl = G and nl = n,

the same for all groups l (i.e., the number of members and the adjacency matrices are the

same for all groups). Let eXl be a column vector that stacks all Kn elements in Xl and a

constant term. We can write the model in (1) as

yl = Ayl +B eXl + "l; (3)

where A = �G and B eXl = ��+Xl� +GXl, so the elements of the matrix of coe¢ cients B

are functions of G, �, �, and . Equation (3) is a system of n linear equations. The reduced

form (de�ned by solving for the endogenous yl in terms of the exogenous covariates Xl) of

equation (3) is

yl = C eXl + (I � A)�1 "l;

where C = (I � A)�1B. With L (the number of groups) large enough, one can identify and

estimate the reduced-form matrix of coe¢ cients C, by linearly regressing each element of yl
on the vector of regressors eXl, assuming "l is uncorrelated with eXl.

Some form of rank and order conditions are then needed to identify the structural co-

e¢ cients A and B from C, and additional rank and order conditions would be needed to

recover G, �, �, �, and  from A and B (or to just recover �, �, �, and  in standard models

where G is known). By construction, A and B are functions of n2 + 2 + 2K structural

parameters (G, �, �, �, ) while C consists of n� (Kn+1) reduced-form coe¢ cients. Thus
it is straightforward to verify the order condition for identifying A and B from C for a given

pair of n and K. The issues for identi�cation here are rank conditions for identifying A and

B, and for recovering the structural parameters given A and B.
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The linear-in-means model, which corresponds to a G having all o¤-diagonal elements

equal to 1=(n � 1), su¤ers from the �re�ection problem�as pointed out by Manski (1993).

The re�ection problem is a failure to obtain identi�cation because of a violation of the rank

condition. As in ordinary linear simultaneous systems, the most common solution to the

re�ection problem is to regain identi�cation by imposing exclusion assumptions, e.g., by

assuming some contextual e¤ects are zero as in Graham and Hahn (2005). In the above

notation, this is equivalent to assuming some elements of  equal zero, thereby restricting

the matrix B and hence C to satisfy the rank condition. Both Blume, Brock, Durlauf

and Jayaraman (2015) and de Paula, Rasul and Souza (2020) can also be interpreted as

providing rank conditions that su¢ ce for identifying structural parameters from reduced-

form coe¢ cients.

Our model of unobserved networks does not rule out linear-in-means networks as a special

case, and so we also require exclusion assumptions for identi�cation. Our model is more

complicated than equation (3) in that we let the unobserved adjacency matrices Gl vary

across groups l 2 f1; :::; Lg. So in our model equation (3) is replaced by

yl = Alyl +Bl
eXl + "l.

Instead of the �xed matrices of coe¢ cients A and B as in equation (3), variation in Gl across

groups gives rise to matrices of random coe¢ cients Al and Bl. As a result we �rst identify

and estimate a mean reduced-form matrix C = E
�
(I � Al)

�1Bl

�
, where the expectation is

over the distribution of random matrices Al and Bl. Then, by making use of some exclusion

(i.e. rank) restrictions, from this C we point identify the structural parameters �, �, �, and

, along with some features of the distribution of the random Gl matrices.

3 The Model

Let the data-generating process (DGP) be as speci�ed in Section 1.1. The data consist

of independent networks, or groups, indexed by l = 1; 2; :::; L. Examples of groups could be

classrooms or villages. Each group l consists of nl individual members, and has an nl-by-nl
adjacency matrix Gl. These adjacency matrices vary across the groups, and are not reported

in the data. What are observed are the outcomes and covariates of every member of each

observed group l. Each group is only observed once.5 We do not model how the latent,

unobserved adjacency matrices are formulated; instead we assume they are independent

5For identi�cation and consistent estimation, there is no problem if outcomes and covariates of some

or all groups are observed more than once. However, in that case, the asymptotic distribution of our

estimator would need to account for the resulting correlation in errors and adjacency matrices across multiple

observations of the same group.
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draws from some unknown distribution of possible networks. As explained below, our method

requires these networks to be exogenous from the individual characteristics whose social

e¤ects are to be identi�ed.

By convention in the literature, the diagonal entries in each Gl are all zeros, i.e., Glii =

0 for i = 1; :::; nl. The o¤-diagonal entries Glij 2 R measure the strength of the link

between individuals i and j, with Glij = 0 signifying the absence of a link. The unobserved

adjacency matrices G1, ..., GL are assumed to be row-normalized. That is, given a group

adjacency matrix G�l , the (i; j)-th component in the row-normalized version Gl is Glij =

G�lij=
�Pnl

j0=1G
�
lij0

�
, where the sum in the denominator is positive almost surely. Although

row-normalization imposes non-trivial behavioral restrictions, it is commonly maintained in

the literature of spatial econometrics and social networks. However, we later (in Section 4.1)

discuss how our method can be generalized to work without row-normalization.

For each individual i in the sample, it is assumed the group l that individual i belongs

to is known. This is a sensible assumption in many applications, because groups are often

de�ned by public information. Examples include geographic boundaries as in Banerjee,

Banerji, Berry, Du�o, Kannan, Mukerji, Shotland, and Walton (2017), where each l indexes

a village, or registration/enrollment records such as class enrollment in the Add Health data

set (see, e.g., Hunter, Goodreau and Handcock (2008)), where each l indexes a school-grade

pair.

To �x ideas, for now let all groups in the data-generating process be of the same size

nl = n. Later we will relax this assumption by dividing the population into subgroups s, and

allowing the group size (and some model coe¢ cients) to vary by s. Another simpli�cation

we impose for now is to exclude any group-level variables from Xl. This means none of

the columns in the matrix Xl consists of n identical entries. We can extend our method to

accommodate such group-level variables; details are deferred to Section 6.1.

To save on notation, we suppress the subscript l while presenting identi�cation results

below.

Let Xck denote the k-th column in X. That is, Xck is an n � 1 vector of the k-th
regressor for all members in a group. The subscript c serves as a reminder that the index

is for columns. Let ~X � (1; X 0
c1; X

0
c2; :::; X

0
cK)

0 denote a (Kn+ 1)� 1 vector that stacks the
regressors for all individuals in a group.

Assumption 1 (Population model) The outcomes on the social network is determined by
y = ��+�Gy+X�+GX+ "; where y and " are n-by-1, G is n-by-n, X is n-by-K, � and

 are K-by-1, and � is a nonzero scalar. G is row-normalized, so the sum of the elements

in every row of G equals one. The joint distribution of (y;X) is directly identi�ed in the

data-generating process.
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Assumption 2 (Exogenous networks) E(" j G;X) = 0.

Assumption 3 (Independence) G is independent of X.6

Assumption 4 (Invertibility and no perfect collinearity) (i) E( ~X ~X 0) exists and is non-

singular. (ii) I � �G is invertible with probability one. (iii) All elements in E(M) and

E(MG) are bounded above by a �nite constant, where M is de�ned in (2).

Our method can be generalized to where Assumptions 2 and 3 hold conditional on other

covariates. However, this extension adds notation and complicates the presentation, so we

defer it to Appendix D, where it is discussed in detail. Nevertheless, even with this general-

ization, Assumptions 2 and 3 are strong restrictions, requiring that networks be conditionally

exogenous. They rule out potential endogeneity in group or link formation that could arise

from unobserved heterogeneity. Speci�cally, suppose in the data-generating process there

exist unobserved factors, either on the individual or group level, which contribute to the

observed outcome y. Such factors would be absorbed in the error terms " in the structural

form. If they also a¤ect link formation or are correlated withX, then the mean independence

in Assumption 2 might not hold.

In Assumption 4, invertibility of M is a common assumption in the literature. It holds,

for example, if j�j < 1,
P

j�n j�Gijj < 1 for all i � n, and G is bounded in its norm. Row-

normalization, which we imposed in Assumption 1, is also often used in network models to

facilitate invertibility. Given Assumption 4, we can obtain the reduced form of the population

model y = ��+ �Gy +X� +GX + " as

y =M (��+X� +GX + ") . (4)

In the next section (Lemma 1) we show that, under Assumptions 1-4, the intercept

and slope coe¢ cients from a regression of y on ~X identify several reduced-form parameters,

denoted by �0 and �k for 1 � k � K. These reduced-form parameters are related to the

structural parameters �, �, �,  and the distribution of adjacency matrices G as follows:

�k = �kE (M) + kE (MG) for k = 1; :::; K; (5)

�0 = �=(1� �).

In other words, for each characteristic indexed by k = 1; 2; :::; K, the (i; j)-th component in

�k is the marginal e¤ect of the k-th characteristic in X for individual j on the mean outcome

of individual i.

To make use of equation (5) for identifying the structural parameters, we also maintain

some mild conditions on the model structure.
6This condition can be replaced by �Gr is mean independent of X for all integers r�. We later discuss

how this condition can be further relaxed to allow dependence of G on some covariates in Appendix D.
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Assumption 5 (Non-trivial e¤ects) (i) For each k < K, the 2-by-2 matrix 
�k �K
k K

!

has full rank. (ii) �K 6= cI for any c 2 R, where �K is a matrix of reduced-form coe¢ cients

for the K-th regressor as de�ned in equation (5).

Part (i) of Assumption 5 rules out the pathological case where some pair of regressors

have proportional contextual and peer e¤ects. As long as one regressor has contextual and

peer coe¢ cients that are not proportional to those of any other regressor, we can reorder the

columns of X to make that regressor be the K-th regressor to satisfy part (i). A su¢ cient

but not necessary condition for part (i) is K = 0 (one of the regressors has no contextual

e¤ect) while �K , �k, and k are all nonzero for all k < K. Part (ii) of Assumption 5 rules

out another pathological case, where the K-th regressor of each individual i has identical

marginal e¤ects on its own expected outcome, but no impact on that of any other group

member.

In addition to Assumptions 1 to 5, to obtain identi�cation we will require some exclusion

restrictions, to satisfy a rank condition. These are discussed at length in Section 4.1.

4 Identi�cation

The �rst step of our identi�cation strategy is to show how the reduced-form parameters

relate to the structural components of our model. As we show below, E
�
y j ~X

�
is linear in

~X. Hence the reduced-form parameters can be alternatively de�ned as the coe¢ cients of ~X

in this conditional expectation.

Lemma 1 Under Assumptions 1-4, the reduced-form parameters �0 and �k for 1 � k � K,

de�ned in (5), are identi�ed.

The proof of lemma 1 is in Appendix A, but the intuition is as follows. Let yi denote the

outcome for individual i. By construction,

E(yi j X) = �0 + eiE(M)X� + eiE(MG)X; (6)

where ei is a 1 � n unit-vector whose i-th component is 1. Observe that the right-hand

side of (6) is linear in all Kn components of X, so E
�
y j ~X

�
is linear in ~X. This equation

holds because G and M are independent from X by Assumption 3, and E(M" j X) =

12



E [ME(" j X;G) j X] = 0 by Assumption 2. The equality in (6) also uses the fact that the
row-normalization of G implies

�M� = �
hX1

s=0
(�G)s

i
� = �0�. (7)

The second equality here holds because, by row-normalization, each row of M adds up to

the same constant 1=(1� �).

In the reduced form of equation (6), the slope coe¢ cient for the k-th regressor of indi-

vidual j is �k
�
eiE(M)e

0
j

�
+ k

�
eiE (MG) e0j

�
. (Note that, for a generic n � n matrix Q,

the product eiQe0j returns the (i; j)-th component in Q.) The full rank and the invertibility

conditions in Assumption 4 guarantee the identi�cation of these reduced-form coe¢ cients.

These identi�ed vectors of regressor coe¢ cients are then arranged into the K matrices of

reduced-form coe¢ cients �k for k = 1; :::; K.

Remark 1 The representation of E(y j X) in (6) is consistent not only with the simulta-
neous social network model with complete information given by equation (1), but also with

an alternative model in which individuals have private information and rational expectations

regarding peer outcomes:

y = ��+ �GE(y j G;X) +X� +GX + ", (8)

where the "�s are private shocks that are independent of other group members conditional on

the commonly known G and the exogenous characteristics X. In equation (1), individuals

have complete information about others in the same group and outcomes are simultaneously

determined. In comparison, each group member in equation (8) has private shocks, and

outcomes are determined through rational expectations of others�outcomes, conditional on

each individual�s information set (G;X). Both models lead to the same representation of the

conditional mean function

E(y j G;X) = (I � �G)�1(��+X� +GX),

which in turn implies (6) under Assumption 3.

Remark 2 Some comments about the data requirement for estimating the reduced-form

coe¢ cients are in order here. If a researcher uses ordinary least squares (OLS) to estimate

these reduced-form coe¢ cients, then the number of groups in the sample needs to be large

relative to the number of regressors. This is not a concern if the empirical speci�cation of the

reduced form only includes a small number of covariates for each individual while the sample
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size is moderately large.7 Otherwise, the researcher needs to take measures to estimate the

reduced-form coe¢ cients using limited data. For example, instead of requiring the sample size

be large relative to the number of regressors in OLS, de Paula et al. (2020) impose a sparsity

condition on the structural-form adjacency matrix, and then use a penalization approach to

estimate the reduced-form interaction matrix. In contrast, we propose alternative ways to

deal with such data de�ciency using anatomy of partitioned regressions in Section 6.2. By

doing so, we choose to avoid sparsity restriction on structural adjacency matrices, which is

necessary for the penalization approach. Finally, note that some prominent papers in this

literature just assume reduced-form coe¢ cients can be identi�ed and estimated, including

Bramoulle et al. (2009) and Blume et al. (2015).

In the next lemma, we construct 2(K � 1) intermediate parameters ak and bk for k =
1; :::; K � 1 from the reduced-form coe¢ cients �k. Later, the �nal step of the identi�cation

will recover the structural parameters �; �;  from these intermediate parameters ak and bk.

Lemma 2 Suppose Assumptions 1-5 hold. Then for each k < K, the equation

ak�k + bk�K = I (9)

has a unique solution (ak; bk) 2 R2, where 
ak

bk

!
=

 
�k �K
k K

!�1 
1

��

!
. (10)

Proof of Lemma 2. For any k = 1; :::; K � 1, the inverted matrix on the right-hand side
of (10) has full rank under condition (i) in Assumption 5. Hence the solution (ak; bk) is

well-de�ned, and (ak; bk) 6= (0; 0). By construction, ak�k+ bk�K = 1 and akk+ bkK = ��.
Therefore,

ak�k + bk�K = E[M(ak�kI + akkG+ bk�KI + bkKG)] = E[M(I � �G)] = I.

Next, we show that for each k, (ak; bk) as de�ned in (10) is the unique solution for (9). That

is, there exists no (~ak;~bk) 6= (ak; bk) such that

(~ak � ak)�k + (~bk � bk)�K = 0: (11)

Consider three mutually exclusive cases. Case 1: ~ak = ak, ~bk 6= bk. Then (11) requires

�K = 0. Case 2: ~ak 6= ak, ~bk = bk. Then (11) requires �k = 0. This in turn implies �K must

7For example, Krueger (1999) uses two individual-level characteristics (dummy variables for gender and

being white), and six group-level features in the speci�cation of student outcomes. For a regular class with

15 students, this leads to 2� 15+ 6 = 36 regressors, which is small relative to the sample size of 465 classes.
(See Table III and Table V in Krueger (1999) for details.)
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be a scalar multiple of I in order for (9) to hold for (~ak;~bk). Case 3: ~ak 6= ak, ~bk 6= bk. Then

(11) requires �k = �
~bk�bk
~ak�ak�K , which is a scalar multiple of �K . Again, this implies that in

order for (9) to hold for (~ak;~bk), �K must be a scalar multiple of I. In each of these three

cases, the implication of (11) contradicts part (ii) of Assumption 5. �

The reduced-form coe¢ cients �0 and �k are identi�ed by Lemma 1. Therefore, for each

k � K � 1, (ak; bk) can be recovered as the unique solution to equation (9). For each k,
this matrix equation yields n2 equations, namely, ak�k;ij + bk�K;ij = 0 for all i 6= j and

ak�k;ii + bk�K;ii = 1 for all i, where i and j go from 1 to n. In Section 5, we construct an

estimator for each pair (ak; bk) by minimizing the L2-distance between ak�k + bk�K and the

identity matrix.

Now consider identi�cation of the structural parameters (�; �; ) given ak and bk. Lemma

2 provides the linear equations 
�k �K
k K

! 
ak

bk

!
=

 
1

��

!
for k = 1; :::; K � 1. (12)

And, by the row-normalization of G in Assumption 1, we get the additional equations

mk � (�0�k�)=n =
�k + k
1� �

for k = 1; :::; K, (13)

where mk is the sum of components in �k divided by n, which is identi�ed due to Lemma 1.

Combining equations (12) and (13) yields a system of 2(K � 1) + K linear equations

for 2K + 1 parameters � � (�; �0; 0)0 with � � (�1; �2; :::; �K)
0 and  � (1; 2; :::; K)

0.

The rank of the matrix of coe¢ cients for � in this linear system is at most 2K � 1, because
akmk + bkmK = 1 for all k < K by construction.

To illustrate, the system of linear equations we obtain from equations (12) and (13) when

K = 3 is: 0BBBBBBBBBBB@

0 a1 0 b1 0 0 0

0 0 a2 b2 0 0 0

1 0 0 0 a1 0 b1

1 0 0 0 0 a2 b2

m1 1 0 0 1 0 0

m2 0 1 0 0 1 0

m3 0 0 1 0 0 1

1CCCCCCCCCCCA

0BBBBBBBBBBB@

�

�1
�2
�3
1
2
3

1CCCCCCCCCCCA
=

0BBBBBBBBBBB@

1

1

0

0

m1

m2

m3

1CCCCCCCCCCCA
: (14)

Here � = (�; �1; �2; �3; 1; 2; 3)
0 which has seven elements, while the rank of the matrix

that multiplies � in equation (14) is bounded above by �ve.8

8To see this, note that the sum of the �rst and the third row equals a weighted sum of the �fth and the

last row (as a1m1 + b1m3 = 1 by construction). Likewise, the sum of the second and fourth rows equals a

weighted sum of the last two rows.
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For general cases with K > 3, the linear system in (14) is generalized to:0B@ 0(K�1)�1 H 0(K�1)�K

�(K�1)�1 0(K�1)�K H

m I I

1CA
| {z }

�

0B@ �

�



1CA
| {z }

�

=

0B@ �(K�1)�1

0(K�1)�1

m

1CA
| {z }

�

, (15)

with m � (m1;m2; :::;mK)
0, I is a K �K identity matrix, and H is a (K � 1)-by-K matrix

constructed from (ak; bk)k=1;:::;K�1 as follows:

H � [diag(a1; :::; aK�1); (b1; b2; :::; bK�1)0].

The rank of the � matrix is generically 2K � 1. It cannot be greater than 2K � 1 by con-
struction, and is strictly less than 2K�1 only if the DGP generates one or more pathological
equality constraint coincidences among the ak, bk, and mk terms.

Next, we de�ne what we call an environment. An environment s is a subpopulation of

groups, de�ned by observable information, that satis�es Assumptions 1 to 5. Each group

lies in one and only one environment. Let S denote the �nite number of environments in the

population. We allow all model parameters and group sizes to vary across environments, and

so all can be given an s superscript. Within each environment, the structural parameters

are �xed. For example, environment can be de�ned by classroom size as in our empirical

study. Notice S = L is ruled out because S is �nite and L ! 1. To accommodate data
that has groups of di¤erent sizes, we can assume a di¤erent environment s for each possible

group size n(s) (additional ways to deal with varying group sizes are discussed later).

Because structural parameters �(s) � (�(s); �(s)0; (s)0)0 2 R2K+1 and the distribution of
(G;X; ") vary by environment in general, we index them with superscripts s, (G(s); X(s); "(s)),

to emphasize that they are allowed to be drawn from di¤erent distributions across di¤erent

environments. For example, for two groups l and k from the same environment s, their

adjacency matrices Gl and Gk di¤er but are drawn from the same distribution indexed

by s; in comparison, for two groups l and k0 from di¤erent environments s and s0, the

adjacency matrices Gl and Gk0 are drawn from two di¤erent distributions, indexed by s

and s0 respectively. Now identi�cation of the model requires that we identify �(s) for each

environment s.

Suppose �(s) and the distribution of (G(s); X(s); "(s)) satisfy the restrictions in Assump-

tions 1-5 for each environment s. Then by repeating the construction of equation (15), we

obtain S linear systems:

�(s)�(s) = � (s) for s = 1; 2; :::; S.

We then stack these S systems to get

�� = d,
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where � and d are column vectors that stack �(s) and � (s) respectively for s = 1; :::; S; and

� is a block-diagonal matrix with diagonal blocks �(s).

Finally, suppose there are additional known linear equality constraints that hold among

the elements of �. For example, some structural parameters might take the same value in

di¤erent environments, or one or more structural parameters might be known to equal zero

(i.e., exclusion restrictions). Denote these additional restrictions by R� = c where R and c

are known a priori (see the next subsection for details). Let 	 � [�;R] denote a combined
coe¢ cient matrix constructed by stacking � on top of R, and de�ne the vector v � (d0; c0)0.
We can then summarize all these equality constraints by the linear system

	� = v.

Theorem 1 Assume the population consists of S environments for some �xed constant S.
Let Assumptions 1-5 hold for each environment s = 1; :::; S. Assume that 	 has full rank.

Then �(s), �(s), (s), and �(s) for s = 1; :::; S are all identi�ed.

As the very �rst step, we construct 	 and v using the coe¢ cients identi�ed from Lemma

1 and 2 above. To prove Theorem 1, we �rst get identi�cation of �, and hence of �(s), �(s),

and (s) for all s, by � =(	0	)�1	0v. Then, using Lemma 1, �(s) is identi�ed by �(s) =

(1� �(s))�
(s)
0 .

Once the structural parameters are identi�ed, equation (5) (which can now vary by

environment s) provides equality constraints that the matrices E(M (s)) and E(M (s)G(s))

must satisfy. These constraints are not su¢ cient to identify moments of the distribution

of the adjacency matrix itself, but they provide restrictions that we will later use to test

hypotheses about the networks, such as whether they are linear-in-means or not.

We discuss restrictions that su¢ ce to give 	 full rank, as required by Theorem 1, in the

next section.

4.1 Rank restrictions

To satisfy the rank condition in Theorem 1, we require restrictions of the form R� = c.

The number of rows in R must at least equal the number of required restrictions on the

coe¢ cients � to satisfy the rank condition in Theorem 1. This number depends on both the

number of regressors K and the number of environments S. For example, with K = 3 and

S = 1, we require two additional linear restrictions on � to make 	 full rank.

One way to see why rank restrictions like R� = c are needed is to consider Manski�s

(1993) re�ection problem again. Manski�s linear-in-means social interactions model is a

special case of our model where G(s) is the same for all groups in each environment s, and
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where all o¤-diagonal elements of G(s) equal 1=(n(s)� 1). The re�ection problem shows that
in this model, even if G(s) were known, the structural parameters would not be identi�ed

without additional restrictions. Since our model includes this linear-in-means model as a

special case, we must require at least as many additional restrictions for identi�cation.9

There are two types of rank restrictions that are most natural to impose. The �rst type

are exclusion restrictions, which consist of assuming that some elements of either � or 

equal zero (like the exclusion restrictions commonly used to identify linear simultaneous

systems of equations). Graham and Hahn (2005) use such exclusion restrictions to identify

the linear-in-means model.10 To illustrate, suppose K = 3 and S = 1. In this case it su¢ ces

to assume that one regressor Xk has no contextual e¤ect (
(1)

k = 0) and a non-zero direct

e¤ect (�
(1)

k 6= 0), while another regressor Xk0 has no direct e¤ect (�
(1)

k0 = 0) and a non-zero

contextual e¤ect (
(1)

k0 6= 0). More generally, with K � 3, 	 has full rank generically if R

is de�ned by the exclusion restrictions that there exist k, k0 < K with k = 0, �k0 = 0

and �k 6= 0; k0 6= 0 . So essentially, we get identi�cation if one regressor has no contextual
e¤ects and another has no direct e¤ects. In contrast, restricting two regressors to both have

no contextual e¤ects but nonzero individual e¤ects would not su¢ ce to make 	 full rank (this

turns out to be a case where the order condition would be satis�ed but the rank condition

is not).

Since it would be unusual for covariates to have contextual but not direct e¤ects, we con-

sider a second type of rank restriction, which exploits the presence of multiple environments

s. These restrictions are that some structural parameters do not vary by environment. To

illustrate, suppose we have two di¤erent environments, so S = 2, and we assume that peer

e¤ects vary by environment, but direct and contextual e¤ects do not. Then the restrictions

R� = c will include the equations �(1) � �(2) = 0 and (1) � (2) = 0. In this case 	� = v

simpli�es to 0BBBBBBBBBBB@

0 0 H(1) 0

� 0 0 H(1)

m(1) 0 I I

0 0 H(2) 0

0 � 0 H(2)

0 m(2) I I

R

1CCCCCCCCCCCA

0BBB@
�(1)

�(2)

�



1CCCA =

0BBBBBBBBBBB@

�

0

m(1)

�

0

m(2)

c

1CCCCCCCCCCCA
; (16)

where we let � = �(1) = �(2) and similarly for . Inspection of equation (16) shows this

9It is not su¢ cient to rule out the linear-in-means model to eliminate this problem, since there exist

many other models in our framework that are also not identi�ed without additional restrictions.
10Graham and Hahn (2005) also use instruments from outside the model to obtain identi�cation. In

contrast we only consider restrictions on coe¢ cients to gain identi�cation.
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still does not provide enough restrictions for identi�cation (note that increasing S from 1

to 2 increased the number of required restrictions). However, if we impose one exclusion

restriction, such as assuming that one contextual e¤ect (i.e., one element of ) equals zero,

and we impose the constraint that �(1) 6= �(2), then that provides enough restrictions to

generically satisfy Theorem 1.

Note that the requirement that �(1) 6= �(2) can be tested in this case, since, by equation

(16), �(1) 6= �(2) if and only if m(1) 6= m(2).

The assumption that � and  do not vary by environment in this example can be relaxed.

For example, if the direct e¤ects � are the same across groups but the contextual e¤ects vary,

so (1) 6= (2), then the full rank condition required for identi�cation will still hold generically

if one of the regressors has no contextual e¤ect in either environment, that is, if one element

in (1) and (2) equals zero.

For our empirical application in Section 7, we analyze students�math test scores. In

that application, we assume two environments corresponding to small (s = 1) and large

(s = 2) class sizes. For identi�cation we allow � to vary by class size while �xing � and .

This generalizes the models using class size variation to estimate constant peer e¤ects (e.g.,

Boozer and Cacciola (2001) and Graham (2008)). We then need one additional exclusion

restriction. For this we assume that a student�s number of days of absence from school has

an impact on his own test score but not on those of other classmates, so the element of 

corresponding to days of absence is set to zero. This exclusion restriction is motivated by the

fact that common speci�cations of student outcomes in the empirical literature typically do

not include any contextual e¤ect for students�days of absence from school. See, for example,

Krueger (1999), Hanushek (1999), Boozer and Cacciola (2001), and Krueger and Whitmore

(2001). We concur with the literature that such an exclusion restriction is plausible, because

there is no empirical or anecdotal evidence that students in these schools made coordinated

e¤orts to play truant. In our application, we generalize previous speci�cations by letting

days of absence have direct, individual e¤ects, which are shown to be statistically signi�cant

in Section 7.3.

We conclude this section by discussing how the rank restrictions mentioned above also

help to generalize our method without row-normalizing the adjacency matrices G. To �x

ideas, let�s consider the simple case with three individual characteristics (K = 3), and use the

linear system in (14) to illustrate the role of row-normalization in our method. On the one

hand, Lemma 1 and 2, and hence the �rst four equalities in (14), would hold even without

the row-normalization of G in Assumption 1. On the other hand, (13) and the last three

equalities in (14) would not hold without row-normalization, and as a result we would be

left with a linear system of four equations, which is insu¢ cient for recovering seven unknown

parameters in �. Therefore, without row-normalizing G, point identi�cation of � requires
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further rank restrictions. The two approaches proposed in this section could precisely serve

this purpose. For example, if the model imposes no contextual e¤ects, i.e., k = 0 for

k = 1; 2; 3, we can uniquely solve for (�; �1; �2; �3) from the linear system (14) provided the

coe¢ cient matrix, after dropping the last three rows, has full rank (four). Alternatively, we

can accommodate contextual e¤ects but exploit the presence of multiple environments to

add rank restrictions by adopting the second approach proposed above. We note that these

additional required rank restrictions may in practice impose strong additional assumptions

on the model.

4.2 Individual labels

De�ne the label of an individual in a group l to be the row of Yl and Xl where that

individual�s data appears, and hence is also the row of Gl that contains that individual�s

links. When we refer to individual members i = 1; :::; n of a group l, any given member�s

value of i is that member�s label.

The ordering, or labeling, of individuals in a group l determines the ordering of the rows of

that group�s adjacency matrix Gl. Therefore, the labeling of individuals in each group a¤ects

the distribution of adjacency matrices. As a result, the validity of our assumptions may

depend in part on how individuals in each group are labeled. In particular, our assumptions

require that, for the chosen labeling of individuals, every group�s random array (Xl; Gl; "l)

is drawn from the same underlying joint distribution of group arrays, and that distribution

satis�es the properties given in Assumptions 2, 3, and 4.

Analogous labeling requirements exist in other papers that identify social network models

from reduced-form coe¢ cients, including Bramoulle et al. (2009), Blume et al. (2015), and de

Paula et al. (2020). Similar requirements apply to the labeling of players in many empirical

game models. For example, to infer private values from bids in auctions, it is assumed that

bidders who share the same label across di¤erent auctions be independent draws from the

same underlying distribution of private values. See, e.g., Section 3.2.2 and 4.1 in Athey and

Haile (2005). Another example is the labeling of �rms in matching markets. For example,

Fox, Yang, and Hsu (2015) recover unobserved complementarities from matching patterns

across many markets in a sample. Their method requires either that the labels of �rms on

both sides have common meaning across markets in the data, or that the distribution of

unobserved characteristics is fully exchangeable in �rm labels.

There are three methods we can use to deal with this labeling issue. One is to assume

that the joint distribution of (Xl; Gl; "l) is exchangeable in individual labels. In this case,

how the individuals are labeled would have no impact on the identi�cation strategy or on

the asymptotic properties of the estimator we propose in the next section. Under exchange-
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ability, one could simply randomly label individuals from 1 to n in each group. However,

exchangeability is a strong symmetry restriction that in many ways resembles (though is still

less restrictive than) the linear-in-means model.11 Note that it would be su¢ cient for our

results to only assume exchangeability within environments, not across environments.

A second method would be to use panel data, where the groups are time periods. In

this case the individual labels would be by de�nition �xed and known across time periods,

so the labeling issue would not arise. However in this case our identi�cation would require

a long panel, so the number of time periods would need to go to in�nity, and our assumed

independence of network draws across groups could be di¢ cult to satisfy in such a panel

data setting.

An alternative to either panel data or assuming exchangeability is to order, and hence

label, individuals in each group based on some observable characteristics that may a¤ect

link formation but are otherwise exogenous (and so are not included in Xl). In our empirical

application, we order students in classrooms based on their dates of birth. Within classrooms,

students�dates of birth are typically not included as an element of Xl in models of test score

outcomes. See, e.g., Krueger and Whitmore (2001).12 However, dates of birth may have non-

trivial impacts on link formation. For example a child may be less likely to consider a much

younger or older classmate as a friend than one with a closer birthday. The assumption

then is that, with students sorted by dates of birth, and hence labeled by their order of

seniority within in each group l, the random arrays (Xl; Gl; "l) for l � L can be treated as

independent draws from some underlying distribution. This means that, given the ordering

of students by age, Xl and the adjacency matrix for each group l are independent draws from

some unknown distribution of demographics and possible adjacency matrices. This may be

a strong assumption, since it requires that the researcher know a priori what conditioning

characteristic (like date of birth) su¢ ces to satisfy this assumption. Note, however, that if

exchangeability happens to hold, then this labeling based on any observed characteristic is

known to be innocuous.

11In the linear-in-means model, M is constant and therefore identical to E (M), and has a simple form

where the ratio between any diagonal and any o¤-diagonal element of M is a known function of n and �.

In contrast, in our model, even under exchangeability, that ratio is jointly determined by the distribution

of network links in addition to n and �. So even with exchangeability, our model is more general than the

linear-in-means model.
12Some papers, such as Angrist and Krueger (1991), showed that the dates of birth could a¤ect broader,

longer-term outcomes. However, since we use essentially the same STAR data as Krueger and Whitmore

(2001), we follow them to exclude dates of birth as a direct regressor. Still, our partitioning of classes into

more versus less disbursed dates of birth does allow for some indirect e¤ects on outcomes via di¤erences in

link formation.
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5 Estimation

To estimate the structural parameters of our model, we use a sample of outcomes and re-

gressors over random networks (yl; Xl)l=1;2;:::;L. Assume that across l = 1; ::; L, (yl; Gl; Xl; "l)

are independent draws from the environments in the population model. Our estimator is

based on sample analogs of the moments and steps used for identi�cation. The estimator is

analogous to indirect least squares, in that we �rst estimate reduced-form coe¢ cients, and

then use them to recover the structural parameters.

To �x ideas, we �rst consider the case of a single environment (S = 1), so the required

rank restrictions R� = c are all exclusion restrictions.

Step 1: For each i 2 f1; :::; ng, linearly regress the outcome (yl;i)l=1;:::;L on a constant
and on (Xl)l=1;:::;L, yielding Kn + 1 slope coe¢ cients for each i. Note that each of these

regressions uses L observations. These regressions correspond to equation (6). The constant

term in each regression should be the same �0, so these regressions can be estimated jointly,

imposing the constraint that the estimated intercept in each regression be the same �̂0 2 R.13

After running these regressions, the resulting coe¢ cients are then arranged into matrices

�̂k 2 Rn�n for k = 1; 2; :::; K, as described immediately before and after Lemma 1. Also,

construct m̂k � (�0�̂k�)=n for k = 1; 2; :::; K. Note at this stage one could test the condition
of non-trivial marginal e¤ects required by part (ii) of Assumption 5, using these estimates

and their associated standard errors.

Step 2: For each k = 1; 2; :::; K � 1, estimate the solution to equation (9) using the
extremum estimator

(âk; b̂k) � arg min
ak;bk2R

X
i;j

�
ei(ak�̂k + bk�̂K � I)e0j

�2
. (17)

A potentially less e¢ cient, but closed-form alternative would be to use a subset of the

information in (9) to construct a smaller linear system that could then be solved for (ak; bk)

by matrix inversion. An example of such a system would be just the equalities that the

diagonal entries in ak�̂k + bk�̂K sum to n and the o¤-diagonal entries add up to 0. These

closed-form estimates could be used as starting values for the extremum estimation above.14

Step 3: Given the estimates from Step 2, calculate the closed-form estimator of �̂ � (�̂;
�̂1; :::; �̂K ; ̂1; :::; ̂K)

0 using

�̂ �
�
	̂0	̂

��1
	̂v̂;

13Alternatively, we may �rst demean the data, estimate these regressions separately, each without an

intercept, and then recover an estimate of the common intercept �̂0.
14Many alternative smaller linear systems could be constructed for ine¢ cient closed-form estimation, each

using a di¤erent subset of the equalities in equation (9). One could then estimate (âk; b̂k), or obtain consistent

starting values for extremum estimation of these coe¢ cients, by taking a (possibly weighted) average of these

many closed-form estimates.
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where 	̂ is the coe¢ cient matrix formed by stacking (12) and (13) along with the exclusion

restrictions R� = c, as in Theorem 1.

For example, in the case with K = 3 above:

	̂ �

0BBBBBBBB@

0 â1 0 b̂1 0 0 0

1 0 0 0 â1 0 b̂1

0 0 â2 b̂2 0 0 0

1 0 0 0 0 â2 b̂2

m̂ I I

R

1CCCCCCCCA
; v̂ �

0BBBBBBBB@

1

0

1

0

m̂

c

1CCCCCCCCA
;

with R� = c representing equalities describing the exclusion restrictions, such as some of the

contextual and direct e¤ects being set to zero. Finally, the remaining structural parameter

� is estimated by b� = (1� b�)b�0.
Now consider how this procedure can be generalized to handle multiple environments, so

S � 2. To do so, �rst implement steps 1 and 2 separately for each environment s, to get

estimates â(s)k ; b̂
(s)
k ; m̂

(s)
k , s � S. Then, for step 3, stack the estimated matrices �̂ with R,

and the estimated vector d̂ with c as in the preceding subsection, to obtain 	̂ and v̂. Then

� is estimated by a classical minimum distance method:

�̂ � argmin
�2�

(	̂� � v̂)0��1(	̂� � v̂),

where � denotes the feasible parameter space and ��1 is a chosen weight matrix that is

symmetric and positive de�nite. The �rst-order condition for this minimization yields the

estimator

�̂ =
�
	̂0��1	̂

��1 �
	̂0��1v̂

�
The following theorem shows consistency of this estimator under standard conditions.

Assumption 6. For each s � S, the parameter space for (a(s)k ; b
(s)
k ) de�ned in (10) is

compact for all k � K.

Theorem 2 Suppose Assumptions 1-6 hold for each s � S, and 	 has full rank. Then �̂

converges in probability to � as L!1.

In Appendix A, we provide the proof of Theorem 2. To see intuition for the consistency

of �̂, recall that for each environment s and each k � K, �̂(s)k consists of OLS coe¢ cient

estimates from linear regressions with L observations, and m̂(s)
k is a simple linear function

of all the elements in �̂(s)k . Hence these estimators are consistent for the actual �
(s)
k and

m
(s)
k in the DGP. In addition, (â(s)k ; b̂

(s)
k ) are two-step extremum estimators, whose objective
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function in (17) depends on �̂(s)k smoothly. As L!1, this objective function converges in
probability, uniformly over the parameter space, to its limit where �̂(s)k is replaced by �(s)k .

Lemma 2 implies this limit is uniquely minimized at the actual (a(s)k ; b
(s)
k ). By a standard

argument for the consistency of extremum estimators, (â(s)k ; b̂
(s)
k ) converges in probability to

(a
(s)
k ; b

(s)
k ) for each s and k. Note that 	 and v consist of known constants, a

(s)
k , b

(s)
k , and m

(s)
k

for k � K and s � S. It then follows from the Slutsky Theorem that �̂ is consistent for �.

In Appendix A, we also explain why �̂ is
p
L-convergent and asymptotically normal.

Essentially, this result comes from the parametric convergence of OLS regression coe¢ cients,

and application of the delta method.

6 Extensions

6.1 Group-level variables and group �xed e¤ects

The identi�cation and estimation methods in Sections 4 and 5 can be readily extended to

accommodate group-level regressors. Suppose each group l has a row vector of group-level

characteristics zl 2 RP . For example these could be attributes of the teacher when each
group is an elementary school class.

For the moment, consider just a single environment, so S = 1 and the s superscript is

omitted. Including group level e¤ects the structural model becomes

yl = ��+ �Glyl + �zl� +Xl� +GlXl + "l,

with � 2 RP being a column vector of additional coe¢ cients. One could interpret � as a
source of �correlated e¤ects�. Let Assumption 1, 2 and 3 hold with Xl replaced by (Xl; zl),

and let part (i) of Assumption 4 hold with ~Xl � (1; zl; X
0
l;c1; X

0
l;c2; :::; X

0
l;cK)

0. The reduced

form is now

E(yl j Xl; zl) = �0 + E(Ml)�zl� + E(Ml)Xl� + E(MlGl)Xl. (18)

The �rst-step linear regressions identify �0 and (�k)k�K as before. But in addition, these

regressions now include zl. Denote the reduced-form coe¢ cients for zl as � 2 RP . The p-th
component of �, denoted �p, satis�es �p � �p=(1 � �). This equality follows from equation

(18) and the row-normalization in Assumption 1, which as noted earlier implies that each

row in Ml adds up to the same constant 1=(1 � �). We used this same relationship earlier

to obtain �0 = �=(1� �). Applying Theorem 1, we identify �; �; ; � from �0; (�k)k�K , and

R� = c. Finally, the parameters � can then be identi�ed by � = v(1� �). Correspondingly,

for estimation let �̂ = �̂(1 � �̂), where �̂ are the OLS estimates for the slope coe¢ cients of

zl in the reduced-form regression in equation (18).
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Now if we have multiple environments, then run the above reduced form regressions

separately for each environment s as before, but now including zl as additional regressors.

We may then identify and estimate � from �
(s)
0 ;
�
�
(s)
k

�
k�K

for s � S and R� = c as before,

and estimate each �̂
(s)
using �̂

(s)
= �̂(s)(1� �̂

(s)
).

Finally, this procedure can be further extended to accommodate unobserved group-level

�xed e¤ects (denoted $l). Essentially, we can remove these �xed e¤ects by applying group-

level demeaning of the outcomes to the reduced form, prior to recovering the structural

parameters. Speci�cally, the method consists of replacing the dependent variables y in the

�rst-stage reduced-form regressions with demeaned outcomes y � �y, and following the same
steps as before to estimate the structural parameters �. Then, we can recover the remaining

parameters � and � by plugging the estimates for � into the non-demeaned reduced form

in (18), and applying an exogeneity and location normalization assumption that E($l j
zl; Xl; Gl) = 0. Details of this procedure are provided in Appendix F.

6.2 Dimension reduction

Again, begin by considering the case of only one environment, so s superscripts can be

dropped. In the �rst-step regressions of yl;i on Xl for each i � n, we need the number of

groups L in the sample to be large relative to the dimension of regressors Kn (where n is the

group size and K is the number of individual characteristics in X). Blume et al. (2015) and

de Paula et al. (2020) have similar data requirements on the number of groups. However, in

some applications, L might not be large relative to Kn.

One possible way to deal with this issue could be to apply sparsity related methods like

LASSO in Tibshirani (1996) to these �rst-step reduced-form regressions, with the caveat

that setting small elements of �k equal to zero could have e¤ects of unknown magnitude

on the resulting structural model parameters. De Paula et al. (2020) impose sparsity and

penalization on the adjacency matrix in the structural form while estimating the reduced

form interaction matrix.

Alternatively, by making an additional uncorrelatedness assumption regarding character-

istics, our method can be implemented using sequential steps that involve justK dimensional

regressions. Suppose for each individual i that the vector of characteristics xl;i 2 RK is un-
correlated with those of other group members (xl;j)j 6=i. This may occur if, e.g., members

are randomly assigned to groups. We may then transform all observed variables into mean

deviation form: �yl;i � yl;i � �yi and �xl;i � xl;i � �xi for i = 1; :::; n where �yi � 1
L

P
l0�L yl0;i,

�xi � 1
L

P
l0�L xl0;i. Now, for each i and j from 1 to n, separately regress �yl;i on �xl;j. This

gives a total of n2 regressions, each having K regressors and L observations. The resulting

coe¢ cients from these regressions can then be assembled into the reduced-form coe¢ cient
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matrices �k for k � K. Then, given these �k matrices, one can proceed as before to estimate

the model.

With multiple environments (S > 1), the above regressions would be run separately

in each environment, before proceeding to the later steps of identi�cation and estimation

as before. Either of the above dimension reduction methods may be especially useful in

applications with multiple environments, where the number of groups in some environments

s could be small relative to Kn(s). We adopt the second approach to estimate reduced form

coe¢ cients in our application.

6.3 Variation in group sizes

Our identi�cation and estimation method assumes that all groups within each environ-

ment s have the same group size n(s). But with K individual characteristics in X, this

requires observing enough groups of size n(s) (meaning that L(s), the number of groups in

environment s, is large enough) to estimate �rst-step reduced form regressions consisting of

Kn(s) coe¢ cients in each environment s. However, in some samples we may not observe

enough groups of each size to implement these regressions. We propose two ways to resolve

such data de�ciencies. One requires some additional uncorrelatedness assumptions, while

the other exploits an assumption that, within each environment, groups with di¤erent sizes

share the same structural parameters.

The �rst approach exploits the dimension-reduction methods in Section 6.2. To �x ideas,

�rst suppose individual characteristics xl;i 2 RK are uncorrelated across group members

(as would happen if, e.g., individuals were randomly assigned to groups with di¤erent sizes).

Then, as explained in Section 6.2, one can estimate the reduced form coe¢ cients for each i via

a sequence of lower-dimension regressions, each involving only K instead of Kn(s) regressors.

In this case, one can account for variation in group sizes in each of these lower-dimension

regressions by including dummy variables for group sizes and interacting them with the slope

coe¢ cients. This method can be generalized to allow for correlated individual characteristics,

by instead applying the partitioned regressions to estimate reduced form coe¢ cients, and

again including group size dummies (and their interactions with slope coe¢ cients) in these

regressions.

The second approach we propose can be used even if the sample has very few observa-

tions of some group sizes. This second approach pools groups of di¤erent sizes into a single

environment, and so requires that the structural parameters �; �; ; � be the same among

all the di¤erent sized groups being pooled. This second approach takes smaller groups, and

augments them with additional simulated �pseudo-individuals�to arti�cially increase their

size, to match the size of other, larger groups. Under certain conditions, the resulting pooled
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regressions then consistently estimate a weighted average of reduced-form coe¢ cient matri-

ces for groups of di¤erent sizes, yielding consistent estimates of the structural parameters.

Details are in Appendix C.

In our empirical application, we apply the second method. We de�ne S = 2 environments:

�small class size�and �large class size�. Small classes pool classes (groups) having 15 to 20

students, while large classes pool classes of 21 to 25 students.

7 Peer E¤ects in Tennessee Elementary Schools

We apply our method to analyze the social e¤ects among elementary school students who

participated in the Student/Teacher Achievement Ratio (STAR) Project in the U.S. State of

Tennessee. The STAR project was a four-year longitudinal study funded by the Tennessee

General Assembly and conducted by the Tennessee State Department of Education. The

goal of the project was to assess the impact of class sizes on students�academic performance

through randomized experiments.15 The STAR sample data does not report any measure of

links among students, and so is a candidate for applying our method of estimation.

The typical method of evaluating potential peer e¤ects in a model without link data

is to assume a linear-in-means speci�cation. In classroom applications, this is equivalent

to assuming every class has an adjacency matrix where each student in the class is linked

to all others in the class, with equal weights. Examples of papers that use this method

include estimates of contextual e¤ects of student-teacher races in Dee (2004), gender ratios

in Whitmore (2005), and a composite of peer characteristics in Graham (2008) and Sojourner

(2013). Boozer and Cacciola (2001) apply a linear-in-means speci�cation to the STAR data,

using experimental variation in class quality (fraction of students exposed in the previous

year to small classes) as an instrument to identify peer e¤ects.

Instead of assuming each student in a class is linked to all the others with equal weights,

our estimator makes no assumption about what the within-class unobserved links actually

are, and allows these links to vary across classes. We also do not require an instrument,

although we do require exclusion assumptions as explained in Section 4.1. We nevertheless

identify both peer and contextual e¤ects. We also use our results to test some hypotheses

about these e¤ects, and about the link formation process, and we use our structural model

estimates to perform some counterfactual calculations.

15A general survey of in�uences on learning and associated outcomes is Heckman and Mosso (2014).
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7.1 Data description

We observe a cohort of students who were in kindergarten in 1985-1986. Seventy-nine

public schools were selected to participate in the project, representing various geographic lo-

cations (inner city, urban, suburban or rural). Students and teachers were randomly assigned

to classes with varying sizes of 13 to 25 students.16 Note that our estimator neither requires

nor directly exploits this random assignment; however, random assignment does make some

of our assumptions more plausible. An example is the dimension reduction discussed in

Section 6.2.

Our sample consists of 258 classes that had at least 15 but no more than 25 students each.

The total number of students in the sample is 5,189. We partition the classes in the sample

into S = 2 environments: smaller classes with 15-20 students, and larger classes with 21-25

students according to the original design of the project. In each class, we order the students

by their dates of birth, and use this ordering to label individual students. Table 7.1 reports

summary statistics of the students�math test scores in the second and third grade (t2 and t3)

and other individual-level or class-level variables to be used in our empirical analysis. These

include a student�s number of days of absence from school (abs), students� self-reported

motivation scores (mot), and a discretized measure of teachers�years of experience (tec).

We standardize the math scores in the second grade t2 using the overall mean and standard

deviation of raw scores of all classes in the sample.

Table 7.1 reports that the average math score in the third grade is 620:7 for small classes,

and 616:6 for large classes. In addition, Table 7.2 shows that a t-test for the null hypothesis

of equal mean scores in small and large classes (allowing for unequal variances) rejects the

null at the 1% level. The sign of this di¤erence is consistent with �ndings in Krueger (1999),

which reports in a bigger sample that on average Grade K-3 test scores in smaller classes are

about 5 percentage points (or 0.2 standard deviations) higher than in larger classes. Other

papers that report similar patterns include Hanushek (1999) and Krueger and Whitmore

(2001).

Table 7.2 also reports the p-values for testing the equality of means of demographic

variables in small versus large classes. Unlike the test scores, we fail to reject the null of

equal means for each of the demographic variables. This provides some support for the

assumption that the assignment of students and teachers to classes is independent of these

demographic variables. On the other hand, Table 7.2 suggests that the small classes have a

higher average for Grade 2 scores than large classes, and the di¤erence is highly statistically

signi�cant at the 1% level. One explanation, which is reconcilable with earlier �ndings in

16Students who joined the cohort at STAR schools after 1985-1986 were also included in the experiment

throughout later years.
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the literature, is that the students enrolled in smaller classes had already developed better

math skills than their peers in larger classes before the beginning of the third grade.

Table 7.1. Summary Statistics

Small class size (122 classes) Large class size (136 classes)

mean median std dev range mean median std dev range

t3 620.7 618.0 40.88 [487.0, 774.0] 616.6 616.0 40.15 [510.0, 774.0]

t2 0.077 0.287 0.936 [-5.902, 1.042] -0.029 0.287 1.023 [-6.355, 1.042]

abs 6.743 5.000 6.643 [0, 59] 6.902 5.000 6.429 [0, 55]

mot 49.29 50.00 3.990 [17, 59] 49.14 50.00 4.013 [18, 60]

tec 13.30 13.00 8.416 [0, 36] 14.19 14.00 9.079 [0, 38]

Notes: t3 : raw scores for 3rd grade math; t2 : standardized scores for 2rd grade math (using

overall mean and std dev across all classes); abs: days of absence; mot : self-reported moti-

vation score; tec: teacher experience (in # yrs).

Table 7.2. Test of Equal Means
(small vs. large classes)

p-value p-value

t3 0.001 abs 0.402

t2 < 0.001 mot 0.161

tec 0.420

Table 7.3: Estimates of Social E¤ects
Small Class Large Class

E¤ects Coef. est. (s.e.) est. (s.e.)

Peer � 0.8478*** (0.0189) 0.9208*** (0.0215)

Group � 0.0709 (0.2885) 0.2032 (0.2609)

Constant � 94.543*** (26.221) 48.126*** (14.450)

est. (s.e.)

Direct �1 -0.3639** (0.1611)

�2 0.0384 (0.0653)

�3 23.356*** (5.3011)

Context 2 -0.0118 (0.0742)

3 13.129** (5.8605)

Notes: Standard errors are computed using B = 1000 bootstrap

samples. ***: signi�cant at 1%; **: signi�cant at 5%.
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7.2 Econometric speci�cation

Our model, corresponding to equation (1), is

t3l;i = �(s) + �(s)
X

j
G
(s)
lij t3l;j + �1absl;i + �2motl;i + �3t2l;i + �(s)tecl

+2
X

j
G
(s)
lijmotl;j + 3

X
j
G
(s)
lij t2l;j + "l;i,

where i and j are indices (labels) for individual students, l is an index for class, and (s) is the

environment index. Each summation
P

j is over all students in the same class l as student

i. For each pair i and j, G(s)lij is the row-normalized unobserved zero or nonzero link between

the members labeled i and j in class l, in environment s. The coe¢ cients to be estimated

are peer e¤ects �(s), direct e¤ects (�1; �2; �3), contextual e¤ects (2; 3), intercepts �
(s), and

correlated e¤ects �(s) (this last is the marginal impact of teacher experience, a group-level

covariate).

The rank restrictions we have imposed for identi�cation are as follows. First, this speci-

�cation allows abs to have a direct e¤ect (�1 6= 0) but no contextual e¤ects (1 = 0). That
is, a student�s absence from school a¤ects his own test scores, but has no impact on his

classmates other than through peer e¤ects. This is an exclusion restriction. Other covariates

mot (self-reported motivation score) and t2 (Grade 2 math score) are not restricted, and so

can have both direct and contextual e¤ects. Our second rank restriction is that we assume

the individual e¤ects � and contextual e¤ects  are the same in the two environments, small

and large class sizes (which is why � and  do not have s superscripts above). All other

structural parameters, i.e., the intercept �(s), the peer e¤ect �(s), and the correlated e¤ect

�(s), are permitted to di¤er between small (s = 1) vs large (s = 2) classes. These con-

straints result in more rank restrictions than are required to satisfy Theorem 1. Our model

is therefore over-identi�ed, which we will exploit by providing some model speci�cation tests.

Our methodology does not require explicit modeling or parametrization of the network

formation process. However, as discussed in Appendix D, we do require conditional in-

dependence between the random adjacency matrices and some exogenous covariates while

extending our model to allow for network dependence on some student demographics. To

control for such possible dependence of the network, we partition the classes (and hence par-

tition each of the environments) in our sample into those with higher versus lower dispersion

in birthdays.17 In the notation of Appendix D, Xa
l is a dummy indicating low versus high

birthday dispersion, and Xe
l is the set of other covariates in the model. We then report esti-

mates for social e¤ects that are sample-size-weighted averages of estimates obtained across

these partitions.

17For each class we calculate the standard deviation of students�birthdays. We label a class as having

�high birthday dispersion�if the standard deviation exceeds six months.
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7.3 Estimation results

Table 7.3 reports our structural coe¢ cient estimates. Standard errors are calculated

using B = 1000 bootstrap samples, each of which is constructed by drawing classes from the

original sample with replacement.

Estimates of peer e¤ects are statistically signi�cant and positive in both small and large

classes, with the estimated coe¢ cient � being 0:85 and 0:92 respectively. A t-test for the

equality of peer e¤ects in small and large classes rejects the null of equality at the 1% level.

The magnitudes of our � estimates are comparable to earlier �ndings that used the same data

but very di¤erent methodologies. For example, using a linear-in-means speci�cation (with

average class size of students in the previous year as an instrument) Boozer and Cacciola

(2001) estimate the peer e¤ects to be 0:86 for the second grade and 0:92 for the third

grade. De�ning links to be a simple function of measured social distance and employing

some variance restrictions, Rose (2017) estimates the peer e¤ects of 0:90. Graham (2008)

reports a peer e¤ect of 0:86 for normalized math scores in a linear-in-means social interaction

model. The estimated magnitudes of peer e¤ects are quite similar across these di¤erent

papers and modeling strategies, though the implications and hence implied counterfactuals

di¤er somewhat by speci�cation. Moreover, we later test and reject the linear-in-means

speci�cation, and we obtain estimates of both direct and contextual e¤ects in addition to

peer e¤ects.

Unlike these previous papers, our peer e¤ect estimates di¤er in small vs large classes.

The bigger value of � in larger classes could be due to students having more options to form

links (like friendships or study partners) in larger classes. This could on average lead to

better matches, and hence be conducive to more productive relationships.

Our estimates also show that the number of days absent from school has a small but sta-

tistically signi�cant direct e¤ect on a student�s test performance. We �nd that self-reported

motivation scores have no signi�cant direct or contextual e¤ects. In contrast, students�per-

formance in the second grade (t2) have both direct and contextual e¤ects that are positive

and statistically signi�cant. A unit (one standard deviation) increase in a student�s score in

the second grade improves his own raw score in the third grade by 23:36 points, and increases

his friend�s third grade scores by 13:13 points.

We infer that the higher average Grade 3 score in small classes should be mostly attributed

to better Grade 2 preparation in small classes, as demonstrated in Tables 7.1 and 7.2. While

Table 7.3 shows that positive peer e¤ects are bigger in large classes, this e¤ect is not su¢ cient

to counteract the trajectory of higher Grade 2 preparation in small classes. Note that the

structural intercept � is also higher in smaller classes. This also contributes to the higher

average Grade 3 performance in small classes.
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7.4 Speci�cation tests

In this section we report results from a general speci�cation test of our model, and tests

of some speci�c adjacency matrix speci�cations.

We �rst exploit the fact that we imposed su¢ cient rank restrictions to over-identify our

model. Recall in Theorem 1, � is identi�ed from 	� = v. In our empirical application, � has

seven elements while 	 has �fteen linearly independent rows, yielding eight degrees of over-

identi�cation. Our estimator minimizes a measure of distance between 	� and v, so under

the null of correct speci�cation, the minimized objective function is asymptotically zero. To

test this, exploiting the over-identi�cation, we use B = 1000 bootstrap samples to estimate

the sampling distribution of the minimized objective function and calculate p-values under

the null.18

Recall that, to control for possible network dependence, we partition the data by low

versus high dispersion in the dates of birth, and minimize separately for each. We obtain

separate test statistics for each partition, and p-values are reported in Table 7.4. We therefore

fail to reject the null of correct model speci�cation.

Next we turn to tests of network structure. We cannot identify or estimate individual

adjacency matrices G(s)l . However, we do identify the expected value of some functions of

these matrices. Since our model only imposes regularity assumptions on the distribution of

adjacency matrices, we can use these identi�ed functions to test some models of network

speci�cation against arbitrary regular alternatives. In particular, we consider two di¤erent

null hypotheses: the linear-in-means speci�cation, and a Poisson random network, i.e., the

Erd½os-Rényi (1959) network, where links are drawn independently from a heterogeneous

Bernoulli distribution. Both of these network speci�cations imply restrictions on the reduced-

form coe¢ cient matrices �k that we use to construct tests.

18Note that our estimator does not lend itself to the use of classical J-tests of over-identi�ed models in

the Generalized Method of Moments. This is because the coe¢ cient matrix in the last step of estimation

is constructed from the estimates of reduced-form coe¢ cients in earlier steps, analogous to indirect least

squares. Once these reduced-form coe¢ cient estimates are calculated, the linear system used in the last step

is deterministic.

32



Table 7.4: Tests for Over-identi�cation
p-values

low disp. 0:569

high disp. 0:358

Table 7.5: Wald Test Statistics for Linear-in-Means (d.f.=29)
small class (p-val) large class (p-val)

low disp. 79.915 (<.001) 63.874 (<.001)

high disp. 45.112 (.028) 61.061 (<.001)

Table 7.6: CMD Test Statistics for Poisson Random Network (d.f.=3)
small class (p-val) large class (p-val)

low disp. 49.880 (<.001) 171.327 (<.001)

high disp. 36.954 (<.001) 101.636 (<.001)

Table 7.7: Di¤erences in Test Scores under the Linear-in-Means Network

Est. mean � p-val

small, low disp 6.054 0.105

large, low disp -9.596 0.060

small, high disp 5.810 0.184

large, high disp -6.405 0.239

Notes: Est. mean �: average di¤erence in class means of grade

three math scores in a network with equal weights on all friends.

Table 7.8: Impact of Counterfactual Peer E¤ects
Est. mean � p-val

small, low disp 16.198 0.003

large, low disp -11.637 0.001

small, high disp 2.954 0.620

large, high disp -5.301 0.187

Notes: Est. mean �: average di¤erence in class means of grade

three math scores when peer e¤ects in small and large classes

are swapped in a network with equal weights on all friends.
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In the linear-in-means speci�cation, for every group l in each environment s, the adjacency

matrixG(s)l is constant (the same for all l) with all o¤-diagonal elements taking the exact same

value. With the s superscript dropped for simplicity, this implies that, for each individual

characteristic k,

�k � (I � �G)�1(�kI + kG) =
�
I + �

1��G
�
(�kI + kG).

This in turn means that all the o¤-diagonal components in �k must be identical. We calculate

Wald test statistics using a 6� 6 leading principal minor of the reduced form coe¢ cient for

t2 (standardized Grade 2 score) in each of the partitions (de�ned by birthday dispersion)

for each of the environments (de�ned by class size). We choose t2 as the characteristic k

to base the test on. The resulting test statistics are reported in Table 7.5. The number of

restrictions, which equals the degrees of freedom, of each test is d:f: = 6 � 6 � 6 � 1 = 29.
Based on the p-values reported in Table 7.5, we reject the hypothesis that the data were

generated by the linear-in-means model. Note there could exist other models that also imply

identical o¤-diagonal components in �k, in which case those models would also be rejected.

To provide a sense of the magnitude of the di¤erence between our estimates and a linear-

in-means model, we can compare our estimate of E(M) to the constant linear-in-means M .

These matrices are large, but to summarize, consider just small groups with low birthday

dispersion. For this environment and partition, the average of the n estimates for diagonal

entries in E(M) is 1:0611, with a standard deviation of 0:0562, whereas the average of the

n(n � 1) o¤-diagonal entries is 0:0801 with a standard deviation of 0:1147. These values
di¤er substantially from the linear-in-means M matrix, which has all diagonal entries equal

to 1:2785 and all o¤-diagonal entries equal to 0:2785 (based on our estimated peer e¤ect of

0:8478).

Next, we construct classical minimum distance (CMD) tests for the null hypothesis of

Poisson random network formation, again controlling for class size and birthday dispersion.

Speci�cally, this null hypothesis posits a random link formation process where, before row-

normalization, each element of each group�s adjacency matrix equals one with some success

probability, and equals zero with one minus that probability, independent of all the other

elements of the adjacency matrix (and of the model error). We allow the success probability

to take one of three values, depending on the di¤erence between the birthdays of the two

students�being potentially linked. Let p be the vector of these three success probabilities.

We construct the CMD objective function for estimating p by simulation. That is, for

any given value of p, we simulate a large number of networks by drawing independently

from a Bernoulli distribution with success probabilities given by the vector p. Let Gr (p)

denote the simulated adjacency matrix in the r-th draw. De�ne the objective function Q̂(p)

as the distance between the estimated reduced form coe¢ cients �̂k and the average (over
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a large number of simulated draws r) of the simulated model-implied marginal e¤ects (I �
�̂Gr (p))

�1(�̂kI+ ̂kGr (p)). We de�ne the distance between these two matrices as a weighted

sum of the di¤erences in average diagonal and o¤-diagonal components, respectively. We

estimate p by minimizing Q̂(p). This objective function would asymptotically converge to

zero if the Poisson network speci�cation is correct, so our test statistic is just the minimized

value of Q̂(p), with a standard error obtained by bootstrapping. The degrees of freedom of

the limit distribution under the null is 3.19 As before, we implement this procedure and test

separately for the two partitions de�ned by birthday dispersion and the two environments

de�ned by class size. Results are reported in Table 7.6. We strongly reject the null of Poisson

random network formation.

In conclusion of this section, we do not reject our general model, and we do reject both

a simple linear-in-means model and a model of independently drawn random links.

7.5 Counterfactuals

Our �rst counterfactual exercise is to ask how test scores would change if the unobserved

networks that generated our data were replaced with linear-in-means networks, holding our

estimated parameters �xed. This can be interpreted as measuring the potential bene�ts or

costs of encouraging more links (i.e., more friendships or other connections) among students.

For each class, we calculate the within-class average di¤erence in test scores between

those observed in the data, and those obtained if every class�s adjacency matrix Gl (which

we do not observe) were replaced with linear-in-means adjacency matrices, holding all our

parameter estimates �xed. The counterfactual in this setting is equivalent to redistributing

some link weight onto classmates who previously were not friends. This could impact a

student�s score in either direction, depending on whether the counterfactual �new friends�

would have a positive or negative impact on a student�s test performance, relative to their

actual friends.

Table 7.7 reports the resulting di¤erence in average test scores across the classes in each

sub-population de�ned by class size and birthday dispersion. Table 7.7 indicates that the

e¤ects of encouraging more links among students would be modest. For comparison, test

scores have a standard deviation of 40 in the raw data (see Table 7.1). These results should

be interpreted cautiously given their lack of statistical signi�cance, but they suggest that

having more friends would slightly increase test scores in small classes, and decrease them

in large classes.

19This is because the restrictions (number of links between reduced form coe¢ cients and model implied

marginal e¤ects) used in the CMD objective function is 2K = 6, and the number of structural parameters

is dim(p) = 3.
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In the next counterfactual exercise, we maintain the linear-in-means counterfactual, and

consider alternative magnitudes of peer e¤ects. Speci�cally, we swap the estimated peer

e¤ects between small and large classes (i.e., increase � to 0:9208 in small classes and decrease

� to 0:8478 in large classes). The goal of this exercise is to assess how peer e¤ect magnitudes

interact with the contextual and other di¤erences between small and large classes.

Table 7.8 reports the average changes in class means within each sub-population again.

The table shows that increasing peer e¤ects in small classes would lead to signi�cantly better

test scores, and reducing peer e¤ects in large classes would yield worse performance. These

e¤ects are larger and highly statistically signi�cant for the low dispersion partition.

8 Conclusions

We provide an original method for identifying and estimating social interaction e¤ects on

many small networks, when the networks are not observed. We propose a two-step estima-

tor, and apply our method to estimate direct, contextual and peer e¤ects among elementary

school students. Among other results, we �nd that the peer e¤ects are larger in bigger

classes, that encouraging more links/friendships among students might not signi�cantly im-

prove outcomes (and could make them worse), and we can reject the usual linear-in-means

speci�cation of network links.

One limitation of our model is that it requires network formation to be exogenous, af-

ter conditioning on covariates. Relaxing this constraint, perhaps using new models of the

joint determination of network links and outcomes (as alternatives to the ERGM framework

mentioned in literature review), would be a useful area for future research.
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Appendix

A. Proofs

Proof of Lemma 1. The outcome of each individual i in group l is

yl;i = ~X 0
l�l;i + ~"l;i;

where ~"l;i � Ml;ri"l with Ml;ri being the i-th row in Ml, and �l;i is a (Kn + 1)-by-1 random

vector:

�l;i � [�0; (�1Ml;ri + 1Ml;riGl) ; :::; (�KMl;ri + KMl;riGl)]
0

with �k; k being the k-th components in �; . Recall that the joint distribution of (yl; Xl) is

directly identi�ed in the data-generating process (DGP) under Assumption 1. By construc-

tion, for each individual i,

E
�
~Xlyl;i

�
= E

�
~Xl
~X 0
l�l;i

�
+ E

�
~Xl~"l;i

�
= E

�
~Xl
~X 0
l

�
E (�l;i) ,

where the second equality holds because of the exogeneity of (G;X) in Assumption 2, and the

independence between G and X in Assumption 3. Under the non-singularity of E
�
~Xl
~X 0
l

�
in Assumption 4-(i), we can recover E(�l;i) from the joint distribution of (yl; Xl) as

E (�l;i) =
h
E
�
~Xl
~X 0
l

�i�1
E
�
~Xlyl;i

�
for each i = 1; 2; :::; n. Rearranging the components in E(�l;i), we identify �0 � �=(1 � �)

and �k � E[Ml(�kI + kGl)] for each k = 1; :::; K. �

Proof of Theorem 2. The estimators for reduced form coe¢ cients in Step 1 are OLS

estimators for slope coe¢ cients in a regression. Thus under Assumptions 1-3 and 4-(i),

�̂k
p! �k, m̂k

p! mk for all k � K. Next, for each k = 1; :::; K � 1,���X
i;j

�
ei(ak�̂k + bk�̂K � I)e0j

�2 �X
i;j

�
ei(ak�k + bk�K � I)e0j

�2���
=

���X
i;j

�
ei [ak(�̂k + �k) + bk(�̂K + �K)� 2I] e0j

	�
ei [ak(�̂k � �k) + bk(�̂K � �K)] e

0
j

	���
� max

i;j

��ei [ak(�̂k + �k) + bk(�̂K + �K)� 2I] e0j
��� nX

i;j

��ei [ak(�̂k � �k) + bk(�̂K � �K)] e
0
j

��o
�

�
(jakj+ jbkj)max

i;j;k0

��ei(�̂k0 + �k0)e
0
j

��+ 2�� n2 � (jakj+ jbkj)max
i;j;k0

��ei(�̂k0 � �k0)e
0
j

�� ;
where the inequalities are due to the triangular and Cauchy-Schwarz inequalities. By the

consistency of �̂k and the Continuous Mapping Theorem, the �rst term on the right-hand side

of the last inequality is bounded in probability, and the last term is op(1). Therefore, due to

compact parameter space in Assumption 6, the objective function of the extremum estimator

37



in Step 2 converges in probably to its population counterpart uniformly over (ak; bk). That

is, for all k � K,

sup
ak;bk

���X
i;j

�
ei(ak�̂k + bk�̂K � I)e0j

�2 �X
i;j

�
ei(ak�k + bk�K � I)e0j

�2��� p! 0:

By Lemma 2, the limit function
P

i;j

�
ei(ak�k + bk�K � I)e0j

�2
is uniquely minimized at the

solution of (ak; bk) in (10). By Theorem 2.1 in Newey and McFadden (1994), (âk; b̂k)
p!

(ak; bk) for all k � K. Because 	 has full rank and the weight matrix ��1 is positive

de�nite, 	0��1	 is invertible. The consistency of �̂ then follows from the Slutsky Theorem.

�
The estimator �̂ is

p
L-convergent and asymptotically normal under standard regularity

conditions. To see this, note that for each k � K, �̂k consists of slope coe¢ cient estimates

from a regression. Besides,
�
âk; b̂k

�
are two-step extremum estimators whose objective

function depends on �̂k, and m̂k is a linear function of �̂k (i.e., the sum of all components

in �̂k divided by the group size n). By a standard argument of two-step estimators similar

to Section 6.1 of Newey and McFadden (1994) or Chapter 12.4 in Wooldridge (2010), one

can show that (âk; b̂k; m̂k)k=1;:::;K are jointly
p
L-convergent and asymptotic normal, with

a limiting covariance that takes account of the �rst-step estimation error in �̂k�s. Next,

recall that our estimator has a closed form �̂ �
�
	̂0��1	̂

��1 �
	̂0��1v̂

�
, with 	̂ and v̂

being a matrix and a vector that consist of elements in (âk; b̂k; m̂k)k=1;:::;K . Also note that

	̂0��1	̂ converges in probability to an invertible matrix, because 	 has full rank and ��1

is symmetric and positive de�nite. Hence one can apply the delta method to show that �̂ isp
L-convergent and asymptotically normal.

B. Monte carlo simulation

We provide a simulation study of the �nite sample performance of our estimator. We

simulate 200 samples, each of which consists of L independent groups. Each group involves

n individuals, where n is a �xed small integer.

The structural equation in our DGP is y = � + �Gy + X� + GX + ", where X is an

n�3 matrix that consists of three characteristics. The parameter values are: � = 1, � = 0:7,
� = (1:5; 2; 0)0 and  = (0:9; 0; 0:6)0. For each observation i = 1; ::; n, the error terms "i is

independently drawn from a standard normal distribution. The elements in the �rst column

of X are independently drawn from a multinomial distribution with equal probability mass

over f�1; 1; 2g, the second from a standard normal N(0; 1), and the third from a normal

N(1; 2). The three characteristics are uncorrelated with each other. The links in the latent

adjacency matrix G� (of which G is a row-normalization) are each independently drawn from

Bernoulli with success probability 0:5.
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Table B.1. Finite-sample Performances of the Estimator with Unobserved Links

(Group size: n = 10)

L = 60 L = 120 L = 240 L = 480

m.s.e. bias std m.s.e. bias std m.s.e. bias std m.s.e. bias std

� 0.0197 -0.0305 0.1374 0.0044 -0.0162 0.0648 0.0017 -0.0061 0.0409 0.0010 -0.0069 0.0314

�1 0.7232 0.0288 0.8521 0.0143 0.0133 0.1190 0.0047 0.0123 0.0677 0.0024 0.0086 0.0487

�2 0.6762 0.0590 0.8223 0.0078 0.0130 0.0876 0.0031 0.0072 0.0553 0.0018 0.0074 0.0416

1 1.3511 0.2260 1.1430 0.2911 0.0808 0.5347 0.1009 0.0399 0.3159 0.0760 0.0357 0.2740

3 0.1192 0.0370 0.3441 0.0484 0.0151 0.2200 0.0225 -0.0016 0.1505 0.0125 0.0061 0.1119

� 0.5919 0.1020 0.7645 0.2349 0.0955 0.4763 0.0956 0.0336 0.3082 0.0495 0.0382 0.2198

Note: m.s.e., mean bias and std dev are calculated from empirical distribution of coe¢ cient estimates in 200 simulated samples.

Table B.2. Finite-sample Performances of the Estimator with Unobserved Links

(Group size: n = 20)

L = 60 L = 120 L = 240 L = 480

m.s.e. bias std m.s.e. bias std m.s.e. bias std m.s.e. bias std

� 0.0181 -0.0340 0.1305 0.0037 -0.0086 0.0603 0.0017 -0.0037 0.0417 0.0007 -0.0059 0.0258

�1 0.0151 0.0199 0.1216 0.0031 0.0024 0.0556 0.0015 0.0051 0.0389 0.0006 -0.0020 0.0238

�2 0.0118 0.0184 0.1071 0.0022 0.0044 0.0463 0.0008 0.0028 0.0283 0.0004 -0.0017 0.0207

1 1.4307 0.2101 1.1805 0.2747 0.0443 0.5236 0.1233 0.0255 0.3510 0.0546 0.0279 0.2326

3 0.1422 0.0448 0.3753 0.0373 0.0006 0.1937 0.0209 0.0016 0.1448 0.0105 0.0184 0.1010

� 0.5534 0.1597 0.7284 0.1794 0.0582 0.4206 0.1041 0.0213 0.3228 0.0495 0.0268 0.2215

Note: m.s.e., mean bias and std dev are calculated from empirical distribution of coe¢ cient estimates in 200 simulated samples.

We estimate the model using the method in Section 5. In the �rst step, we use the �rst

dimension-reduction algorithm (when regressors are uncorrelated across group members) to

estimate the reduced form coe¢ cients, as explained in Section 6.2. Table B.1 and B.2 report

the mean-squared error (m.s.e.), the mean bias and the standard deviation of the estimators

for group sizes n = 10 and 20, using the empirical distribution of estimates from 200 simulate

samples. We increase the sample size L, i.e., the number of groups in each sample, from

L = 60 to L = 480.

The results show that our estimator is reasonably accurate even when the sample is

moderately small with L = 60. Furthermore, the mean-squared errors diminish at the

parametric rate, i.e., the same rate as the increase in sample sizes. In fact the reduction

in m.s.e. between L = 60 and L = 120 is faster than the increase in sample size. This is

because the �rst-step estimation of reduced form coe¢ cients consists of n�n regressions on
K = 3 characteristics. The reduction in estimation error in such a low-dimension regression

is substantial as the number of observations increases from L = 60 to L = 120.

It is worth noting that the di¤erence in m.s.e. is small between the DGP with small group

size n = 10 versus the larger n = 20. This illustrates a desirable feature of our estimator: The

precision of the estimator depends primarily on the accuracy of the �rst-step reduced form

coe¢ cients. Once the constants ak; bk are recovered from the reduced form coe¢ cients, the
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second step does not introduce additional sampling errors. A useful result for practitioners

is that the �rst-step estimation precision can be enhanced using the dimension-reduction

methods explained in 6.2. For example, in the current simulation example, the dimension-

reduction method replaces n = 10 regressions on n � K = 30 explanatory variables with

n � n = 100 regressions on K = 3 characteristics. This dimension-reduction helps obtain

the encouraging performance results reported in Tables B.1 and B.2.

C. Pooling groups with di¤erent sizes

In this appendix, we explain how to impute smaller groups with simulated �pseudo-

individuals�. Doing so allows us to run a pooled regression with balanced group sizes, and

consistently estimate a weighted average of reduced form coe¢ cient matrices.

To �x ideas, let there be a single environment (S = 1 so that the superscript s can be

dropped) in the DGP. There are two group sizes nl 2 fn; �ng within this environment, and
suppose the assumptions in Section 4 hold conditional on either group size. As noted in the

text, this approach of simulating �pseudo-individuals�exploits the fact that the structural

parameter � � (�; �; ; �) is �xed regardless of group sizes within the environment. In

addition, it requires that across all groups and individuals the characteristics of member i in

group l, denoted by Xl;ri, be drawn independently from the same distribution in RK .
For each group l with nl = n, de�ne an �n�K matrix X�

l by stacking the observed matrix

Xl (i.e., the n�K matrix of regressors for group l in the sample) with an (�n�n)�K matrix

of draws simulated from the distribution of regressors of the other (�n � n) individuals in

groups with �n members. Under the assumptions above, by construction we can consider X�
l

as a draw from the distribution of Xl0 when nl0 = �n. De�ne an (�nK+1)-dimensional column

vector:

~Xl �
( �

1; X 0
l;c1; :::; X

0
l;cK

�0
if nl = �n�

1; X�0
l;c1; :::; X

�0
l;cK

�0
if nl = n

,

with Xl;ck denoting the k-th column in Xl as before. By construction, E( ~Xl
~X 0
l) is invariant

to group sizes.

For a large group l with nl = �n and all i � nl, we have E( ~Xlyl;ijnl = �n) = E( ~Xl
~X 0
l)�i(�n),

where

�i(�n) �
�
�0; �1;ri(�n); :::; �K;ri(�n)

�0
and �k;ri(�n) denotes the i-th row of the �n � �n matrix of reduced form coe¢ cients �k(�n)

de�ned in Lemma 1. (Note that we now write �k as a function of nl in order to emphasize

its dependence on group sizes.) Likewise, for any small group l with nl = n and all i � nl,

we have E( ~Xlyl;ijnl = n) = E( ~Xl
~X 0
l)�i(n), where

�i(n) �
�
�0; �1;ri(n);0; �2;ri(n);0; :::; �K;ri(n);0

�0
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and �k;ri(n) denotes the i-th row of the n � n matrix �k(n) and 0 a row vector of (�n � n)

zeros.

Let p(�) denote the probability mass for nl in the population. It then follows that for all
i = 1; :::; n,

E( ~Xlyl;i) = E( ~Xl
~X 0
l) [p(�n)�i(�n) + p(n)�i(n)]

) E[�i(nl)] =
h
E( ~Xl

~X 0
l)
i�1

E( ~Xlyl;i).

Thus E[�k(nl)], with nl integrated out as a random variable, are identi�ed and consistently

estimable for k = 1; 2; :::; K. Assuming �; �; ; � are the same for small and large classes, one

can then proceed and apply the method in Section 4 to estimate the structural parameters

of social e¤ects. We use this method to balance group sizes within the environments of small

or large classes in our application.

D. Dependent networks

In practice, the formation of links on a network may depend on individual characteristics

in the data. We now discuss how to generalize our estimator to deal with this dependence.

Begin by considering a single environment s, where all groups within the environment

have the same size n, and we omit the environment superscript. This procedure can be

applied separately for each environment in the data to obtain reduced form coe¢ cients,

which would then be combined to obtain the structural parameters as in Theorems 1 and

2. Partition individual characteristics into two parts Xl = (Xa
l ; X

e
l ). Let X

e
l denote an

n �Ke matrix of excluded characteristics, i.e., covariates that a¤ect outcomes but not link

formation; letXa
l denote an n-by-Ka matrix that a¤ect individuals�outcomes, link formation

decisions, or both. For example, in our empirical application, we let Xe
l be students�days

of absence from school and test scores from previous years. This assumes friendships are

independent of test scores conditional on observed demographics such as proximity of age.

If we observe all variables that jointly determine network formation and outcomes, then our

method can be applied after conditioning on Xa
l .

There is a large and growing literature on network formation. To just name a few,

Graham (2017), Hsieh, König, and Liu (2020), Hsieh, Lee, and Boucher (2020), Leung

(2015), Leung (2020), and Sheng (2020) explicitly model how the links are formed as an

equilibrium outcome. As stated in Graham (2019), �Ultimately, of course, the goal is to

study the formation of networks and their consequences jointly, but such an integrated

treatment remains largely aspirational at this stage�. Our focus in this paper is on peer

e¤ects with unobserved links, so we simply adopt the conditional independence to deal with

potential endogeneity in network formation.
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Suppose network formation is given by Gl = �(Xa
l ; ul), which does not involve X

e
l . The

reduced form is:

E(yljXl) =

Z hXK

k=1
Ml(�kI + kGl)Xl;ck +MlE("ljXl; Gl)

i
dF (GljXl), (19)

where Xl;ck denotes the k-th column in Xl as before. Assume (i) "l is independent of Xe
l

conditional on (Xa
l ; ul) and (ii) ul is independent of X

e
l conditional on X

a
l . These conditions

allow the unobserved errors "l and ul to be correlated conditional on Xa
l . Under these

assumptions, E(MljXl) and E(MlGljXl) is a function of Xa
l but not Xe

l , andZ
MlE("ljXl; Gl)dF (GljXl) =

Z
MlE("ljXa

l ; Gl)dF (GljXa
l ) � �(Xa

l ).

Conditional on Xa
l , the reduced form coe¢ cients for Xl in (19) are:

�k(X
a
l ) � �kE(MljXa

l ) + kE(MlGljXa
l ) for all k � K.

With abuse of notation, let Ka and Ke denote the set of indices for characteristics in Xa
l ,

Xe
l respectively so that Ka and Ke partition f1; 2; :::; Kg. We can write (19) as

E(yljXl) =
X

k2Ke

�k(X
a
l )Xl;ck +

X
k02Ka

�k0(X
a
l )Xl;ck0 + �(Xa

l )| {z }
� (Xa

l )

;

which is linear in Xe
l conditional on X

a
l .

We can identify the model by the following steps. First, recover  (Xa
l ) and �k(X

a
l ) for all

k 2 Ke for a given realization of Xa
l . In practice, this can be estimated using reduced-form

methods such as kernel estimation of an average derivative E [@E(yljXl)=@X
e
l ], or, exploiting

the structure of E(yljXl), using sieve regressions that replace the �k(X
a
l ) and �(X

a
l ) functions

with sieve expansions, or by linearly regressing yl on Xe
l conditioning on discrete values of

Xa
l . Then, for all k 2 Ke, identify �; �k; k from �k(X

a
l ), using the methods in Section 4. We

can also back out E(MljXa
l ) and E(MlGljXa

l ) from �k(X
a
l ), k 2 Ke, using �k; k, k 2 Ke.20

E. Multiple adjacency matrices

In this part of the appendix, we discuss how our method might be extended to allow peer

e¤ects and contextual e¤ects to operate through di¤erent adjacency matrices. The reasons

why one might be interested in this extension, and citations to previous literature on the

subject, are in Section 2.

20One could also recover the model elements �(�) and �k(�) for k 2 Ka from  (�) by making additional
functional form assumptions, e.g., assuming index su¢ ciency in �(�) and �k(�) for k 2 Ka.
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Again we start with the case of a single environment where all groups have identical size

n, and we suppress the group subscript l throughout this section to simplify notation. Let G

andW be two possibly di¤erent n-by-n adjacency matrices. For each group, peer e¤ects and

contextual e¤ects operate through two di¤erent adjacency matrices G and W , respectively.

Divide the set of individual characteristic regressors into two matrices: V is an n-by-J matrix

of regressors that have both direct and contextual e¤ects, while X is an n-by-K matrix of

regressors that only have direct e¤ects. The structural equation for the outcome is now

y = �Gy +X�X + V �V +WV  + ", E("jG;X; V ) = 0;

where y and " are n-by-1 vectors. Let PrfG 6= Wg > 0. The structural parameters are

�; �X ; �V ; ; �.

Now consider the same steps we used before to achieve identi�cation. The reduced form

is now

E(yjX;V ) = E[(I � �G)�1| {z }
M

(X�X + V �V +WV  + ")jX;V ]

= E (MX�X +MV �V +MWV jX;V )
=

X
k

E(�X;kM)| {z }
'k

Xck +
X
j

E
�
M(�V;jI + jW )

�| {z }
�j

Vcj;

where Xck; Vcj are n-by-1 vectors of single characteristics (the k-th column in X and j-th

column in V ). The last equality assumes (G;W )?(X;V ). Note that 'k and �j are each
n-by-n matrices of reduced form coe¢ cients. Maintain the following two conditions on the

structural parameters:

�X;k 6= 0 8k � K; rank

 
�V;j �V;J
j J

!
= 2 8j < J , (20)

where the second condition rules out proportional social e¤ects as well as the special case

with no contextual e¤ects (j = 0 for all j � J). We also assume

E(M) 6= 0, E(MW ) 6= 0;
@(�1;�2) 6= (0; 0) s.t. �1E(M) + �2E(MW ) = 0. (21)

This second condition in (21) rules out the pathological case where the n�n entries in E(M)
are proportional to those in E(MW ).

Lemma E.1. For each j � J � 1 and k � K, the system of equations

ajk�j + bjk�J = 'k (22)
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has a unique solution  
ajk

bjk

!
=

 
�V;j �V;J
j J

!�1 
�X;k
0

!
. (23)

Proof of Lemma E.1. It is straightforward to check that (ajk; bjk) de�ned in (23) solves (22).

To see that this is a unique solution, suppose there exists (~ajk;~bjk) 6= (ajk; bjk) such that (22)
holds with (ajk; bjk) replaced by (~ajk;~bjk), and 

�V;j �V;J
j J

! 
~ajk � ajk
~bjk � bjk

!
=

 
�1

�2

!
6= 0,

where the inequality follows from the rank condition in (20). It then follows that

(~ajk � ajk)�j +
�
~bjk � bjk

�
�J = E (�1M +�2MW ) = 0. (24)

The last equality is ruled out by (21). �

Lemma E.1 provides an analog to Lemma (1). It may then be possible to combine

these equality constraints with rank restrictions like exclusions and multiple environments

to construct a corresponding extension of Theorem 1 to attain identi�cation of this extended

model.

F. Group-level �xed e¤ects

Our identi�cation strategy can be extended to allow for group-level unobserved het-

erogeneity, i.e., group-level �xed e¤ects. First, we note that if the group-level unobserved

heterogeneity is mean independent from the group and individual-level covariates in (z;X)

(corresponding to the usual assumption in random e¤ects models), then the estimation

method described in Section 6.1 can be directly applied, because in this case the conditional

mean of y given (z;X) is as speci�ed in equation (18).

Now, consider instead the more general �xed e¤ects model. We now have the reduced-

form

y =M (X� +GX + ") +
�

1� �
�+

z�

1� �
�+

$

1� �
�,

where � is still the intercept, z are observed group characteristics and $ is the unobserved

group heterogeneity (�xed e¤ects). Let D = I �C, where C is an n-by-n matrix of identical
entries 1=n, so that Dy returns the within transformation of y. Then under the assumptions

that E("jX;G) = 0 and G?X, a within transformation leads to

Dy = DM(X� +GX + ")) E(DyjX) = E(DM)X� + E(DMG)X.
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Thus we can write the reduced-form coe¢ cients for the k-th characteristic from a regression

using the within transformation as

~�k � E (�kDM + kDMG) = DE[M(�kI + kG)].

Assume the rank condition in Assumption 5-(i) holds and that

~�K 6= cD for any c 2 R. (25)

This condition can in principle be checked directly using the identi�able ~�K . It can then be

established that the following system

ak~�k + bk~�K = D

admits a unique solution  
ak

bk

!
=

 
�k �K
k K

!�1 
1

��

!
. (26)

The proof is almost the same as that of Lemma 1, except that the condition ��k 6= cI

for any c 2 R� in Assumption 5 is replaced by (25). It is worth emphasizing that the
�rst-step reduced-form regressions now consist of regressing demeaned outcomes Dy on the

undemeaned characteristics X to get reduced form coe¢ cients. Given (26), we can then

apply the constructions of Theorem 1 to identify �; �; .

This ��xed-e¤ect�approach does not immediately identify the coe¢ cient for group-level

variables � or the intercept �, in the same way that the �within-transformation�does not

identify the coe¢ cients of variables that only vary by time in linear panel data models. We

can identify these remaining parameters from undemeaned reduced form E(yljXl; zl) = �0+

E(Ml)�zl�+E(Ml)Xl�+E(MlGl)Xl by imposing the exogeneity and location normalization

condition E($ljzl; Xl; Gl) = 0.
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Data Availability

Code replicating the tables in this article can be found in Lewbel, Qu, and Tang (2022)

in the Harvard Dataverse, https://doi.org/10.7910/DVN/PNLZIX.
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