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Abstract

In this paper we explore inference on regression coefficients in semi parametric multi-
nomial response models. We consider cross sectional, and both static and dynamic
panel settings where we focus throughout on point inference under sufficient condi-
tions for point identification. The approach to identification uses a matching insight
throughout all three models and relies on variation in regressors: with cross section
data, we match across individuals while with panel data we match within individuals
over time. Across models, IIA is not assumed as the unobserved errors across choices
are allowed to be arbitrarily correlated. For the cross sectional model estimation is
based on a localized rank objective function, analogous to that used in Abrevaya,
Hausman, and Khan (2010), and presents a generalization of existing approaches. In
panel data settings rates of convergence are shown to exhibit a curse of dimensionality
in the number of alternatives. The results for the dynamic panel data model gener-
alizes the work of Honoré and Kyriazidou (2000) to cover the multinomial case. A
simulation study establishes adequate finite sample properties of our new procedures
and we apply our estimators to a scanner panel data set.
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1 Introduction

Many important economic decisions involve households’ or firms’ choice among qual-
itative or discrete alternatives. Examples are individuals’ choice among transportation
alternatives, family sizes, residential locations, brands of automobile, health plans etc.
The theory of discrete choice is designed to model these kinds of choice settings and
to provide the corresponding econometric methodology for empirical analyses. Due to
variables that are unobservable to the econometrician, the observations from a sample
of agents’ discrete choices can be viewed as outcomes generated by a stochastic utility
maximization model. In the context of choice behavior, the probabilities in the multino-
mial model are to be interpreted as the probability of choosing the respective alternatives
(choice probabilities) and so one is interested in expressing the choice probabilities as
functions of the agents’ preferences and the choice constraints. As in most of the econo-
metrics literature, agents know their own utilities and make a choice from a well defined
choice set, while the econometrician knows the choice set, observes choices and covariates
and the objective here is to learn the finite dimensional coefficients that would character-
ize utilities of various alternatives.

There has been a renewed interest recently among applied economists in estimating
models of multinomial choice with both cross section and panel data. In the marketing,
IO and other literatures, recent papers have also emphasized the role of dynamics in panel
data settings. See for example Merlo and Wolpin (2015) for an application to a dynamic
model of schooling, and crime, Handel (2013) for a model of health insurance choice
among others.1 A central question in these models is the separation of heterogeneity
from state dependence. More broadly in econometric theory, there has been a push for
semiparametric work in models that relax the IIA assumption in both cross section and
panel data setups. For example, Ahn, Powell, Ichimura, and Ruud (2017) studies this
problem with cross section data, Pakes and Porter (2014) and Shi, Shum, and Song (2018)
study multinomial panel data models without IIA, while Khan, Ponomareva, and Tamer
(2019) analyze the identification question in binary response models in dynamic panels
under weak assumptions. More recently Gao and Li (2019) provide novel identification
results in panel multinomial models when the link function can be unknown and/or
nonseparable in the fixed effects.

In this paper, we focus on inference on cross sessional and panel data multinomial re-
sponse models under point identification where we use a unified approach for identifica-
tion in all three classes of multinomial models: cross sectional, static panels, and dynamic

1Other interesting papers include Dubé, Hitsch, and Rossi (2010), Illanes (2016), Ketcham, Lucarelli, and
Powers (2015), Polyakova (2016), Raval and Rosenbaum (2018).
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panels. Throughout we relax the IIA property by allowing for arbitrary correlation in the
unobserved errors across choices. In cross sectional settings, we match different individ-
uals or units in a particular way to obtain a monotone index model that is familiar in
econometrics. This matching requirement is guaranteed to hold under the conditions we
require on the regressors. We then generalize this matching approach to static panel data
settings and require different variation in the regressors over time to garner point identi-
fication. Again, here, the contribution is a model that generalizes Manski (1987) to allow
for correlation in the unobservables (and hence relax the IIA property that he maintains).
We derive rates of convergence in the multinomial maximum score estimator and show
that it is a function of the number of alternatives. Finally, we provide point identification
results in the panel multinomial model with dynamics, provide an estimator in this case
and study its rate of convergence. This generalizes the work of Honoré and Kyriazidou
(2000) to multinomial settings and complements their work by providing large sample
rates of convergence for the various estimators. Our approach is robust in the sense that
it achieves meaningful bounds for the regression coefficients when conditions for point
identification fail, such as when all the regressors are discrete.

We structure the paper as follows. In the next section we formally introduce the cross-
sectional model, and state standard regularity conditions on both observed and unob-
served random variables that guarantee point identification. This model introduces the
main intuition for how we get identification in this paper and can be clearly explained.
This identification strategy also motivates a localized rank based objective function. We
then show that this model yields a root-n consistent and asymptotically normal estimator
under appropriate conditions.

Section 3 generalizes the cross sectional model by assuming the availability of a longi-
tudinal panel data set and introducing unobserved individual and choice specific effects.
For this model we propose a localized maximum score (similar to Manski (1987)) estima-
tor and show that and under certain DGPs is point consistent. Most interestingly in this
paper, we further generalize the multinomial model by introducing dynamics in Section
3.2. Specifically, we do so by allowing lagged values of dependent variables to be ex-
planatory variables. This approach of modeling dynamics was taken in the binary choice
model. See, e.g., Heckman (1978), Honoré and Kyriazidou (2000), Chen, Khan, and Tang
(2015), and Khan et al. (2019). Here again, our procedure is shown to be point consistent
under standard conditions.

Section 4 explores finite sample properties of the new procedures through a small
scale simulation study and Section 5 applies the new procedures using an optical scanner
panel data set on purchase decisions in the saltine cracker market. Section 6 concludes
by summarizing results and proposing areas for future research. The appendix collects
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proofs of many of the theorems stated in the paper.

2 Semiparametric Multinomial Choice

We consider the standard multinomial choice model where the dependent variable takes
one of J + 1 mutually exclusive and exhaustive alternatives (numbered from j = 0 to
j = J). Specifically, for individual i, alternative j is assumed to have an unobservable
indirect utility y∗ij for that individual. The alternative with the highest indirect utility is
assumed chosen. Thus the observed variable yij has the form

yij = 1[y∗ij > y∗ik for all k 6= j]

with the convention that yij = 0 indicates choice of alternative j is not made by agent i.
As is standard in this literature an assumption of joint continuity of the indirect utilities
rules out ties (with probability one). In addition, we maintain the assumption that the
indirect utilities are restricted to have the linear form

y∗i0 = 0

y∗ij = x′ijβ0 − εij, j = 1, ..., J

where β0 is a (p)-dimensional vector of unknown parameters of interest whose first com-
ponent is normalized to have absolute value 1 (scale normalization). Note that for al-
ternative j = 0, the standard (location) normalization y∗i0 = 0 is imposed. The vector
εi = (εi1, ..., εiJ) of unobserved error terms attained by stacking all the scalars εij , is as-
sumed to be jointly continuously distributed and independent of the J × p- dimensional
matrix of regressors Xi whose jth row is x′ij .

Parametric assumptions on the unobservables εi can be maintained such as an iid Type
1 extreme value (multinomial Logit) or multivariate normal (multinomial Probit). The
multinomial Logit model suffers from the well known IIA problem (McFadden (1978)).
The multinomial Probit on the other hand leads to choice probabilities that are difficult
to compute. There has been approaches to ameliorate both problems by for example
using nested logit models, and simulation approaches have been successfully used to
approximate multiple integrals.

We take another approach. We are interested in the question of what is required to
point identify β0 when minimal assumptions are made on the joint distribution of εi. The
identification here is first motivated by the discussion in Khan and Tamer (2018) where
the matching was briefly explored. Previous contributions to this question include Lee
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(1995) who imposed a profile likelihood approach, extending the results in Klein and
Spady (1993) for the binary choice model. Ahn et al. (2017) propose a 2-step estimator that
requires nonparametric methods but show the second stage is of closed form. Shi et al.
(2018) also propose a 2-step estimator in panel setups exploiting a cyclic monotonicity
condition, which also requires high dimensional nonparametric first stage, but whose
second stage is not closed form as Ahn et al. (2017) is.

The next section contains the main intuition that runs through the various models in
the paper. It is provided for the static multinomial model.

2.1 Local Rank Procedure

Consider a multinomial choice model with 3 choices (J = 2) for now where the latent
utilities for alternatives 0, 1, and 2 are:

y∗i0 = 0

y∗i1 = x′i1β0 − εi1
y∗i2 = x′i2β0 − εi2

with the maintained assumption that

(εi1, εi2) ⊥ (xi1, xi2)

but we allow arbitrary correlation between εi1 and εi2.

From a random sample of (yi0, yi1, yi2, xi1, xi2) where

yij = 1[y∗ij > y∗ik,∀k 6= j], j = 0, 1, 2

we are interested in bounds for β0, even when all regressors have discrete support.

From the model and assumptions we have for a given β0 and joint distribution Fε on
the εi, the choice probabilities are given by:

G(xi1, xi2; β0, Fε) =

 P (x′i1β0 − εi1 ≤ 0;x′i2β0 − εi2 ≤ 0)

P (x′i1β0 − εi1 ≥ 0;x′i1β0 − εi1 ≥ x′i2β0 − εi2)

P (x′i1β0 − εi1 ≤ x′i2β0 − εi2;x′i2β0 − εi2 ≥ 0)


To illustrate how we garner information about β0 we first fix xi2 and illustrate with the

choice probability for the first alternative. With xi2 fixed, we have what we call a condi-
tional monotone index model. By this we mean that conditional onXi, P (yi1 = 1|xi1, xi2 = x2)
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is increasing in x′i1β for all constant vector x2. Thus for all i 6= m, we have the following
relationship

P (yi1 = 1|xi1, xi2 = x2) ≥ P (ym1 = 1|xm1, xm2 = x2)⇐⇒ x′i1β0 ≥ x′m1β0

Fixing regressors of one alternatives to obtain a monotonic index models motivates all
our identification results.

Note the above conditional moment inequalities can be repeated for all values of x2

(finitely many if the support of xi2 is finite). Furthermore, note for a fixed x2, P (yi0 =

1|xi1, xi2 = x2) and P (yi2 = 1|xi1, xi2 = x2) are both decreasing in x′i1β0. This can be
exploited also fixing xi1 resulting in other moment inequalities. Collectively, all these
moment inequalities can be used to study the conditions needed for identification.

This local monotonicity translates into an estimation procedure, which will converge
to an informative region.2 For example, assuming a random sample of n observations, we
propose the following weighted3 rank correlation estimator, analogous to the maximum
rank correlation (MRC) estimator proposed in Han (1987), defined here as the maximizer
over the parameter space B, of the objective function

G
(1)
1n (b) =

1

n(n− 1)

∑
i 6=m

1[xi2 = xm2]sgn(yi1 − ym1)sgn((xi1 − xm1)′b) (2.1)

where sgn(·) above denotes the sign operator. The above function can be used for one set
of moment inequalities. But as alluded to, we can also work with yi0 and yi2. In addition
to these, we can fix xi1, which can yield objective functions of the form

G
(2)
2n (b) =

1

n(n− 1)

∑
i 6=m

1[xi1 = xm1]sgn(yi2 − ym2)sgn((xi2 − xm2)′b)

It is clear any one or a combination of the above objective functions above can be used
for inference on β.

Remark 1. In the case where the regressors for choices 1 and 2 are the same (x1 ≡ x2), then
the choice probability for choice 1 foer example is monotonic in the index and a standard rank
estimator applies. In the more interesting case when there are some regressors in common such
as x1β ≡ x̃1β + zγ and x2β ≡ x̃2β + zγ, a two step procedure is possible to get inference on
both β and γ. In the first step, we use the objective function above to get β and hence the indices

2Note that when we are conditioning on, say xi2 being fixed yet allowing xi1 to vary we are implicitly
assuming exclusion between components of these vectors. For more on strategies for inference when
regressors are common across alternative, see Remark 1 below.

3Here the weights correspond to binary, “exact” matches of each component of the vector x2.
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x∗1 = x̃1β and x∗2 = x̃2β. This objective function does not get us information about γ since with
the matching, zγ drops out. But, once x∗1 and x∗2 are “known”, then one can use another rank
procedure in a second step where we condition on x∗1 = x∗2. The choice probability for choice 1 for
example becomes:

P (1|x1, x2, z, x
∗
1 = x∗2) = P (x∗1 + zγ + ε1 ≥ 0; 0 ≥ ε1 − ε2)

This is another version of the conditional monotone index model (monotone in zγ).

A key condition for point identification is the usual full support conditions for one of
the regressors. This condition is stated next.

AS1: At least one of the vectors x1, x2, ..., xJ has one component which is continuously
distributed with positive density on the real line.

Such a support condition is analogous to that assumed in Manski (1975) and Han
(1987).

Note that it is hard to match regressors if these are continuous,4 thus the value of the
objective function will always be 0. But here we can construct kernel weights as follows.
To illustrate for the G(1)

1n (b) objective function, assuming the regressors for choice 2 have
at least one continuous component, we construct the approximate binary weights with:

1[xi2 = xm2] ≈ Kh(xi2 − xm2) ≡ wim

with Kh(·) = K(·/hn) where K is a kernel density function and hn is a bandwidth se-
quence that converges to 0 as n→∞.

The following theorem establishes point identification for β0 and limiting distribution
theory for β̂, the estimator defined as the maximizer of G(1)

1n (b) in 2.1. The proof is omitted
as the same arguments used in Han (1987) and Sherman (1993) can be applied to this
objective function.

Theorem 2.1. In the multinomial choice model, assume εi ≡ (εi1, ...εiJ) is distributed indepen-
dently of xi = (xi1, ...xiJ) with support on RJ . Furthermore, assume that for some j 6= 1, the
first component of xi1 is continuously distributed with support on the real line, conditional on xij .
Also, assume that conditional on xij , the vector xi1 does not lie in a linear subspace of Rp. Then
β0 is point identified.

4 But note this depends on the choice in question. For example, consider the same 3 choice setting. Suppose
for choice 1, the regressor has one continuous component with support on the real line, but the other
components for choice 1 regressors are discrete. Suppose for choice 2 all the components of the regressors
are discrete. Then we can match as in G(1)

1n (b) and G(2)
2n (b), and this in fact will point identify β0.
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In addition, assume a random sample of observations of the vector (yi, xi), i = 1, 2, ...n, G(1)
1n (b)

converges uniformly in probability to G1(b) ≡ E[G
(1)
1n (b)] and B is a compact subset of Rp. Define

our estimator as
β̂ ≡ arg max

b∈B
G

(1)
1n (b) (2.2)

Then β̂ p→ β0.

Furthermore, ifG1(b) is twice continuously differentiable in b for all b in a neighborhood of β0, and
its second derivative, a p× p matrix, is invertible at b = β0, we have limiting distribution theory
for the estimator defined in 2.2; to characterize it, let ζi denote the vector yi1, xi1, xi2 and define

τ(ζi, b) = Em [I[yi1 > ym1]I[x′i1b > x′m1b]I[xi2 = xm2] + I[ym1 > yi1]I[x′m1b > x′i1b]I[xm2 = xi2]]

where the operator Em[·] denotes the expectation taken with respect to ζm; then

√
n(β̂ − β0)⇒ N(0, V −1ΣV −1) (2.3)

where
V ≡ 1

2
E[∇2τ(ζi, β0)]

and
Σ ≡ E[∇1τ(ζi, β0)∇1τ(ζi, β0)′

where∇1,∇2 denote first and second order derivative operators, respectively.

For the case where the regressors used for matching are continuously distributed, so
kernel weighting is required, we also have limiting distribution theory. For ease of illus-
tration, again here we consider consider the case where J = 3. The objective function of
β ∈ B, is now of the form:

1

n(n− 1)

∑
i 6=m

Kh(xi2 − xm2)I[y
(1)
i > y(1)

m ]I[x′i1β > x′m1β] (2.4)

To characterize the limiting distribution theory for the estimator defined as the maxi-
mizer of 2.4, we will use the following notation: ζi denotes the vector y(1)

i , xi1, xi2; define

µ(y
(1)
i , xi1, β, xj2) = E

[
I[y

(1)
i > y(1)

m ]I[x′i1β > x′m1β] (2.5)

+ I[y(1)
m > y

(1)
i ]I[x′m1β > x′i1β]

∣∣∣∣y(1)
i , xi1, xj2

]
8



Then define
τ2(ζi, β) = µ(y

(1)
i , xi1, θ, xi2) · f2(xi2)

where f2(·) denotes the density function of xi2. The function τ2(·, ·) will characterize the
limiting distribution of the maximizer of 2.4. We have the limiting distribution theorem
theorem, whose proof follows from identical arguments to those used in Abrevaya et al.
(2010), and is based on the following regularity conditions:

KWR1 The parameter space B is compact.

KWR2 Random sampling of (y
(1)
i , xi1, y

(2)
i , xi2)

KWR3 εi1, εi2 is distributed independently of xi1, xi2, and has density function which is
positive on R2.

KWR4 Conditional on xi2, xi1 has rank p.

KWR5 For all β in a neighborhood of β0 and all ζi in its support, τ(ζi, β) is twice contin-
uously differentiable with respect to β.

KWR6 The p × p matrix ∇2τ2(ζi, β0) is invertible, where ∇2τ2(·, ·) denotes the second
derivative of τ2(·, ·) with respect to its second argument.

KWR7 The p × 1 vector ∇1τ2(ζi, β0) has finite second moment, where ∇1τ2(·, ·) denotes
the first derivative of τ2(·, ·) with respect to its second argument.

KWR8 The density function of x2i, f2(·) is ` times continuously differentiable with bounded
`th derivative, where ` is an even integer satisfying ` > p/2.

KWR9 The kernel function K(·)is of order ` and hn satisfies
√
nh`n → 0 and nhpn →∞.

Theorem 2.2. Under Assumptions KWR1-KWR9,

√
n(β̂ − β0)⇒ N(0, V −1∆V −1)

where V = 1
2
E[∇2τ2(ζi, β0) and ∆ = E[∇1τ2(ζi, β0)∇1τ2(ζi, β0)′].
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3 Panel Data Multinomial Choice

3.1 Static Multinomial Choice

Paralleling the increase in popularity of estimating multinomial response models in ap-
plied work is the estimation of panel data models. The increased availability of longi-
tudinal panel data sets has presented new opportunities for econometricians to control
for individual unobserved heterogeneity across agents. In linear panel data models, un-
observed additive individual-specific heterogeneity, if assumed constant over time (i.e.,
“fixed effects”), can be controlled for when estimating the slope parameters by first dif-
ferencing the observations.

Discrete panel data models have received a great deal of interest in both the econo-
metrics and statistics literature, beginning with the seminal paper of Andersen (1970).
For a review of the early work on this model see Chamberlain (1984), and for a survey
of more recent contributions see Arellano and Honoré (2001). See also the key contribu-
tion in Manski (1987) on maximum score binary response model. More generally, there
is a vibrant and growing literature on both partial and point identification in nonlinear
panel data models. There are a set of recent papers that deal with various nonlinearities in
models with short panels (T <∞). See for example the work of Arellano and Bonhomme
(2009), Bonhomme (2012), Chernozhukov, Val, Hahn, and Newey (2013), Graham and
Powell (2012), Hoderlein and White (2012), Khan, Ponomareva, and Tamer (2016), and
Chen et al. (2015). See also the survey in Arellano and Honoré (2001).

Here we consider a panel data model for multinomomial choice like Chamberlain
(1984) where the latent utility and observed choices can be expressed as

y∗ijt = x′ijtβ0 + αij − εijt

and
yit = arg max

0≤j≤J
y∗ijt

for i = 1, ..., n, j = 0, 1, ..., J , and t = 1, ..., T . Thus in our notation, for the subscript
ijt the first component i denotes the individual, the second component j denotes the
choice/product, the third component t denotes the time period. Note also that the utilities
above include a set of fixed effects αij that are both individual and choice/product specific.
Throughout, no assumptions are made on the distribution of α′s conditional on x and ε.

In what follows, we denote yijt = 1[yit = j]. We will consider identification and
asymptotics with J, T fixed and n→∞. Existing results for panel data binary choice mod-
els with fixed effects include Andersen (1970), Manski (1987), and Chamberlain (2010)
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among others. The literature on multinomial choice for panel data is more limited. Re-
cent results include Shi et al. (2018) and Pakes and Porter (2014). The latter is concerned
with partial identification. The former achieves point identification. For recent work on
partial identification in binary dynamic panel data models under weak assumptions, see
also Khan et al. (2019).

Here we propose point identification results under similar weak conditions as ones
used in Manski (1987). To illustrate our identification results, assume T = 2, J = 2 (So
the choice set is {0, 1, 2}, with 2 time periods) w.l.o.g. and as before impose normalization
that y∗i0t ≡ 0 for t = 1, 2.

Our identification strategy will be analogous to the cross-sectional case, but now we
match and do our comparisons within individuals over time as opposed to pairs of indi-
viduals. As we will show the analogy is not perfect as we have to condition on “switch-
ers”, in a way similar to the estimation of the conditional Logit model in Andersen (1970)
and the conditional maximum score estimator in Manski (1987). Besides that here we also
need a subset of the population whose regressor values for a choice changes over time,
but whose regressors for a different choice are time-invariant.

Specifically, one objective function we work with is5:

GSP
n (b) =

n∑
i=1

1[xi21 = xi22](yi11 − yi12)sgn ((xi11 − xi12)′b) (3.1)

Note that this objective function is turned off for observations where yi11 = yi12, i.e.,
when individual i chooses alternative 1 in both periods 1 and 2. The objective function
then uses only switchers, or individuals whose choice changes over time.

For the case when xi21, xi22 has continuous components, we replace the indicator func-
tion with a kernel function,

GSP
n (b) =

n∑
i=1

Khn(xi21 − xi22)(yi11 − yi12)sgn ((xi11 − xi12)′b) (3.2)

where K(·) denotes a kernel function, and hn denotes a bandwidth sequence. Under
conditions analogous to Manski (1987), which we state below, β0 is point identified and
the maximizer of GSP

n (b) is a consistent estimator.6 To facilitate exposition in stating our
conditions, we first introduce the following notation.

5In addition to this objective function, one can use the objective function that use choices 0 and 2.
6As was the case in the cross sectional model, point identification is not attainable when all the regressors
are discrete.
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Notation: (i) yt ≡ (y0t, y1t, y2t)
′, εt ≡ (ε1t, ε2t)

′, and xt ≡ (x′1t, x
′
2t)
′ for all t, where xjt ≡

(x
(1)
jt , ..., x

(p)
jt )′ for all j; (ii) For any l-dimensional vector v = (v1, ..., vl)

′, the first component
of v is denoted by v(1), and the subvector comprising its remaining components is denoted
by ṽ; (iii) α = (α1, α2)′; (iv) For generic random vectors ξjt and ξjs, ξj(ts) ≡ ξjt − ξjs,
e.g., x1(12) = x11 − x12 = (x

(1)
1(12), ..., x

(p)
1(12))

′; (v) β0 ∈ B, the parameter space; and (vi)
ρ(b) = y1(12)sgn(x′1(12)b) for all b ∈ B.

Next, we outline the regularity conditions for point identification and consistency of our
semiparametric estimator based on the objective function (3.2).

SP1 {(yi, xi)}ni=1 is a random sample of n observations, where yi ≡ (y′i1, y
′
i2)′ and xi ≡

(x′i1, x
′
i2)′.

SP2 B = {b ∈ Rp : |b1| = 1} ∩ Ξ, where Ξ is a compact subset of Rp.

SP3 For almost all (x, α), (i) εt
d
= εs|α, x for all t 6= s, (ii) εt|α, x has absolutely continuous

distribution on R2.

SP4 Without loss of generality, x(1)
1(12) has everywhere positive Lebesgue density condi-

tional on x̃1(12) and conditional on x2(12) in a neighborhood of x2(12) near zero. The
coefficient β01 on x(1)

jt is nonzero and normalized to have absolute value 1.

SP5 The support of x1(12) conditional on x2(12) in a neighborhood of x2(12) near zero is not
contained in any proper linear subspace of Rp.

SP6 x2(12) ∈ Rp is absolutely continuously distributed with PDF f(·) that is bounded
from above on its support and strictly positive in a neighborhood of zero.7

SP7 For all b ∈ B, f(·) and E[ρ(b)|x2(12) = ·] are continuously differentiable on their
support with bounded first-order derivatives.

SP8 K : Rp 7→ R is a density function of bounded variation that satisfies: (i) supv∈Rp |K(v)| <
∞, (ii)

∫
K(v)dv = 1, and (iii)

∫
|vl|K(v)dv <∞ for all l ∈ {1, ..., p}.

SP9 hn is a sequence of positive numbers that satisfies: (i) hn → 0 as n → ∞, and (ii)
nhpn/ log n→∞ as n→∞.

The above conditions suffice for point identification and consistency of our proposed
estimator as stated in the following theorem, which is proved in Section A.

7Without the absolute continuity assumption, the point identification and consistency results are still valid.
This assumption is made here is only for easing the exposition in the proof.
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Theorem 3.1. β0 is point identified relative to all b ∈ B\{β0}. Let β̂ be a sequence of the solutions
to the problem

max
b∈B

n∑
i=1

K(xi2(12)/hn)ρi(b)

Then, β̂ p→ β0.

Next, to examine the effect of dimensionality in the number of choices, we consider
the case with T = 2 and J + 1 alternatives (numbered from 0 to J , J ≥ 2). For notation
convenience, denote z1 = (x′2(12), ..., x

′
J(12))

′, z2 = y1(12), and z3 = x1(12). Accordingly, the
objective function is written as

n∑
i=1

K(z1i/hn)z2isgn(z′3ib)

Assumptions SP6’ - SP9’ stated below strengthen regularity conditions on the existence
and finiteness of moments higher than those required for consistency and assume addi-
tional smoothness to allow convergence at a faster rate.

SP6’ z1 ∈ R(J−1)p is absolutely continuously distributed with bounded density fz1(·).
Both fz1(·) and the conditional density fz1|z3,z2 6=0(·) are strictly positive in a neigh-
borhood of zero.

SP7’ For all b ∈ B, fz1(·) and E[ρ(b)|z1 = ·] are twice differentiable on their support with
bounded second-order derivatives where ρ(b) = (y11 − y12)sgn

(
(x11 − x12)′b)

)
.

SP8’ K : R(J−1)p 7→ R is a density function of bounded variation that satisfies: (i) supv∈Rp |K(v)| <
∞, (ii)

∫
K(v)dv = 1, (iii)

∫
vK(v)dv = 0, and (iv)

∫
|vl|K(v)dv <∞ and

∫
v2
lK(v)dv <

∞ for all l ∈ {1, ..., (J − 1)p}. [K is with bounded support]

SP9’ hn is a sequence of positive numbers such that as n→∞: (i) hn → 0, (ii) nh(J−1)p
n / log n→

∞, and (iii) nh(J−1)p+3
n → 0.

Under these conditions, the following theorem establishes the rate of convergence of
the proposed estimator as a function of the number of choices J .

Theorem 3.2. Let Assumptions SP1 - SP5 and SP6’ - SP9’ hold and β̂ be a sequence of the
solutions to the problem

max
b∈B

n∑
i=1

K(z1i/hn)z2isgn(z′3ib)

Then, |β̂ − β0|2 = Op((nh
(J−1)p
n )−1/3), where | · |2 denotes the l2 (Euclidean) norm.
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We note that here, in contrast to cross-sectional case there are not “enough” matches
for standard asymptotics to hold. In addition and more interestingly, in the multinomial
panel data setting, rates of convergence depend on the number of choices, J as with more
alternatives, we are matching more covariates. Proofs of the above results are collected in
Section A.

3.2 Dynamic Multinomial Choice

We extend the base model of the previous section by examining the question of inference
in a dynamic version of the multinomial panel data model. We follow the literature here
and focus our inference problem on finite dimensional coefficient vectors which include
in this section, the coefficient on the lagged choice variable.

In many situations, such as in the study of labor force and union participation, trans-
portation choice, or health insurance carrier, it is observed that an individual who has
experienced an event, or made some choice in the past is more likely to experience the
event or make that same choice in the future as compared to another individual who has
not experienced the event or made that choice. Heckman (1981) and Heckman (1991) dis-
cuss two explanations for this phenomenon. The first explanation is the presence of ”true
state dependence” in the sense that the lagged choice/decision enters the model as an
explanatory variable and so having experience the event in the past, an economic agent
is more likely to experience it in the future (due to familiarity for example). The second
explanation that is advanced to explain this empirical regularity is the presence of serial
correlation in the unobserved transitory errors that are in the model and this explana-
tion revolves around heterogeneity (rather than state dependence): some individuals are
more likely to make a given choice than other due to unobserved factors. The economet-
rics literature on the topic has provided various models to try and disentangle these two
explanations. We contribute to this literature.

In particular, we expand results from the previous section by presenting identification
and estimation methods for discrete choice models with structural state dependence that
allow for the presence of unobservable individual heterogeneity in panels with a large
number of individuals observed over a small number of time periods. Our results focus
on point identification. We illustrate the approach with J = 3. A particular model that
we consider can be expressed here as follows.

14



y∗i0t = 0

y∗i1t = x′i1tβ0 + γ01[yi1(t−1) = 1] + αi1 − εi1t
y∗i2t = x′i2tβ0 + αi2 − εi1t

In this model, the parameters of interest are β0 and γ0. Identification is more com-
plicated in dynamic models, even for binary choice. For example, Chamberlain (1985)
shows that β0 is not identified when there are 3 time periods, t = 0, 1, 2.8 Honoré and
Kyriazidou (2000) show point identification9 of β0 and γ0 when there are 4 time periods,
t = 0, 1, 2, 3. Their identification is based on conditioning on the subset of the population
whose regressors do not change in periods 2 and 3. Finally, Khan et al. (2019) derive sharp
bounds for coefficients in dynamic binary choice models with fixed effects under weak
conditions (allowing for time trends, time dummies, etc).

Our identification strategy for the dynamic multinomial choice model is based on con-
ditioning on the subpopulation whose regressors are time-invariant in different manners,
depending on which alternative they are associated with. Specifically, in the three choices,
four time periods setting above we condition on the subpopulation whose regressor val-
ues for choice 2 do not change in period 1, 2 and 3 and whose regressor values for choice
1 do not change over time in period 2 and 3.

After such conditioning, the problem reduces to identifying parameters in a dynamic
binary choice model, for which existing methods can be applied. For example, if the post
conditioning model is a dynamic Logit, which would arise if we begin with a dynamic
multinomial Logit, we can use the method proposed in Honoré and Kyriazidou (2000),
which is valid for four time periods. An attractive feature of their procedure is that when
the covariates are discrete, the estimator will converge at the parametric rate with a limit-
ing normal distribution, so conducting inference is relatively easy. We demonstrate both
methods for the dynamic multinomial choice model considered here.

For the dynamic multinomial Logit model, we use the following conditional likeli-

8But γ0 is identified if β0 = 0.
9Their point identification result requires further restrictions on the serial behavior of the exogenous regres-
sors that rules out, among other things, time trends as regressors. Our identification result for the dynamic
multinomial choice imposes similar restrictions and so also does not allow for time trends as regressors.
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hood function:

GDP,Logit
n (b, g) =

n∑
i=1

1[xi21 = xi22 = xi23, xi12 = xi13]1[yi11 6= yi12]

× log

(
exp ((xi11 − xi12)′b+ g(di0 − di3))yi11

1 + exp ((xi11 − xi12)′b+ g(di0 − di3))

)
where di. ∈ {0, 1}. Note that scale normalization is no longer needed for maximum like-
lihood estimation. Honoré and Kyriazidou (2000) propose a multinomial Logit estimator
whose identification and estimation are based on sequences of choices where the indi-
vidual switches between alternatives at least once during the periods 1 through 3. For
general J and T , the number of such sequences is JT − J2, then coding the estimator
may be cumbersome, especially for cases with large J and/or large T .10 Our estimator
differs from theirs, as here we effectively transform a multinomial choice problem to a
binary choice problem through matching x21 and x22, which makes it considerably easier
to implement.

We note here that in the case when all the regressors across all choices are discretely
distributed, the estimator can be shown to converge at the parametric rate with a limiting
normal distribution, as was shown in Honoré and Kyriazidou (2000) for the binary model.

For the semiparametric model, the objective function is of the form

GDP
n (b, g)

=
n∑
i=1

1[xi21 = xi22 = xi23, xi12 = xi13](yi11 − yi12)sgn ((xi11 − xi12)′b+ g(yi13 − yi10)) (3.3)

Note that for point identification, in this case, we require that one of the components of
the regressors for the first choice has to be continuously distributed. Consequently, when
matching regressors for this choice, we would need to assign kernel weights as illustrated
before.

Under the standard “initial conditions” assumption as in e.g., Honoré and Kyriazidou
(2000),11 the maximizer of this objective function can be shown to be consistent, although
as in the static model, the limiting distribution is nonstandard. Here we state the regular-
ity conditions we impose to establish consistency. The proof is in Section A. To facilitate
exposition of our conditions, we first introduce additional notation:

To simplify exposition, we first introduce extra notations for the dynamic panel set-
ting: (i) θ0 ≡ (β′0, γ0)′ ∈ Θ, the parameter space; (ii) ψ(θ) ≡ y1(12)sgn(x′1(12)b + gy1(03))

10For example, in our empirical illustration, we have J = 4 and Tmax = 77 (unbalanced panel).
11Specifically, for the model at hand, the initial conditions assumption would be that P (yi0 = 1) depends

on xi11, xi12, xi13, αi1.
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for all θ ∈ Θ; and (iii) ∆x ≡ (x′2(12), x
′
2(23), x

′
1(23))

′ and the event Ω ≡ {∆x = 0}. Here
we deliberately keep the notation as close as possible to Honoré and Kyriazidou (2000).
Then, we outline the regularity conditions for point identification and consistency of our
semiparametric estimator based on the objective function (3.3).

DP1 {(yi, xi)}ni=1 is a random sample of n observations, where yi ≡ (y′i0, y
′
i1, y

′
i2, y

′
i3)′ and

xi ≡ (x′i1, x
′
i2, x

′
i3)′.

DP2 Θ = {θ = (b′, g)′ ∈ Rp+1 : |b1| = 1} ∩ Ξ, where Ξ is a compact subset of Rp+1.

DP3 For almost all (x, α), (i) εt ⊥ (x, y0)|α holds for all t = 1, 2, 3, (ii) εt|α is iid over time12

having absolutely continuous distribution on R2, and (iii) P (y10 = 1|x, α,Ω) ∈ (0, 1).

DP4 Without loss of generality, x(1)
1(12) has everywhere positive Lebesgue density condi-

tional on x̃1(12) and conditional on ∆x in a neighborhood of ∆x near zero. The coef-
ficient β01 on x(1)

jt is nonzero and normalized to have absolute value 1.

DP5 The support of x1(12) conditional on ∆x in a neighborhood of ∆x near zero is not
contained in any proper linear subspace of Rp.

DP6 ∆x ∈ R3p is absolutely continuously distributed with PDF f(·) that is bounded from
above on its support and strictly positive in a neighborhood of zero.13

DP7 For all θ ∈ Θ, f(·) and E[ψ(θ)|x2(12) = x2(23) = x1(23) = ·] are continuously differen-
tiable on their support with bounded first-order derivatives.

DP8 K : R3p 7→ R is a density function of bounded variation that satisfies: (i) supv∈R3p |K(v)| <
∞, (ii)

∫
K(v)dv = 1, and (iii)

∫
|vl|K(v)dv <∞ for all l ∈ {1, ..., 3p}.

DP9 hn is a sequence of positive numbers that satisfies: (i) hn → 0 as n → ∞, and (ii)
nh3p

n / log n→∞ as n→∞.

The above conditions suffice for point identification and consistency of our proposed es-
timator as stated in the following theorem, also proved in Section A.

Theorem 3.3. θ0 is point identified relative to all θ ∈ Θ \ {θ0}. Let θ̂ = (β̂′, γ̂′)′ be a sequence of
the solutions to the problem

max
θ∈Θ

n∑
i=1

K(∆xi/hn)ψi(θ) = max
θ∈Θ

n∑
i=1

K(∆xi/hn)(yi11 − yi12)sgn(x′i1(12)b+ gyi1(03)))

Then, θ̂ p→ θ0.
12Note that DP3 (ii) allows the distribution of εt|α to vary across individuals.
13Without the absolute continuity assumption, the point identification and consistency results stated in

Theorem 3.2 are still valid. This assumption made here is only for easing the exposition.
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4 Simulation Study

In this section, we explore the relative finite sample performances of the proposed esti-
mation procedures in cross-sectional and panel data (both static and dynamic) designs.
We generate 1000 replications for six designs, using sample sizes ranging from 250 to
10000. In all designs, the regressor vector always has one and only one component that
is continuously distributed (standard normal) with all the rest being binary, and the er-
ror vector for each individual follows a multivariate normal distribution that allows for
correlation across components. Recall that to implement proposed estimators one must
choose a kernel as well as a bandwidth for matching the continuous regressor. All the
results presented in this section use a normal kernel and Silverman’s rule of thumb to
choose bandwidth.

For the cross-sectional model, we generate data from three designs, varying the num-
ber of regressors and/or the size of the choice set. The first two are for a model with three
choices, and we increase the number of regressors from 3 to 5. This is meant to give an
idea on the sensitivity of our estimator to the dimensionality of the regressor space. In
the third design, we considered three regressors but five choices. Here, we aim to explore
the sensitivity of our procedure to the dimensionality of the choice space.

For the panel data model, we generated data from two designs. The first is for a static
panel data model with three choices and three regressors with two periods of data. The
second panel data design is for the dynamic model where there are three choices and
three regressors with the second of the two binary regressors being the lagged choice. For
this model, we simulate four periods of data as this is the minimum T required for our
point identification result.

For each of these six designs and varying sample sizes, we report the mean bias and
root mean squared error (RMSE) of the corresponding estimator. Since these statistics
can be sensitive to outliers, we also present the median bias and the median absolute
deviation (MAD). Below we state the details of the designs considered and the summary
statistics for our estimators.14

Our benchmark design (Design 1) for the cross-sectional model is based on the data
generating process (DGP) with choice set {0, 1, 2} and latent utility functions:

14For each of the panel data models, we also report results for the two-step estimator, where we construct
the second step estimator based on matching index, computed based on the first step estimators.
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y∗i0 = 0

y∗ij = x
(1)
ij + β1x

(2)
ij + β2x

(3)
ij − εij, j = 1, 2

where x(1)
ij , x

(2)
ij , x

(3)
ij denote the 3 components of the vector xij , β1 = β2 = 1, x(1)

i1
iid∼ N(0, 1),

x
(1)
i2

iid∼ Bino(1, 0.5), x(k)
ij

iid∼ Bino(1, 0.5) for all j ∈ {1, 2} and k ∈ {2, 3}, and

(εi1, εi2)
iid∼ MVN

((
0

0

)(
1 0.5

0.5 1

))
Table 1 reports the results for this benchmark design.

Table 1: (Design 1) 3 Choices, 3 Regressors, 2 Parameters

β1 β2

Mean RMSE Median MAD Mean RMSE Median MAD

N = 250 0.0161 0.4706 0.0104 0.3430 0.0182 0.4798 -0.0135 0.3383

N = 500 0.0418 0.3726 0.0190 0.2297 0.0428 0.3684 0.0224 0.2222

N = 1000 0.0138 0.2619 0.0022 0.1562 0.0098 0.2577 -0.0022 0.1585

As our cross-sectional estimator is “localized” (matching covariates associated with
J − 1 alternatives), one may worried about that the dimensionality of the design (both
in the regressor space and choice space) may have a large effect on the results in Monte
Carlo studies. In order to investigate the finite sample performance of the proposed esti-
mator in higher dimensional, more complicated designs, we consider the following two
modifications of the benchmark design:

• Design 2: We keep the choice set and error distribution unchanged, while add two
regressors to the benchmark design. Specifically, we consider the DGP with latent
utility functions:

y∗i0 = 0

y∗ij = x
(1)
ij + β1x

(2)
ij + β2x

(3)
ij + β3x

(4)
ij + β4x

(5)
ij − εij, j = 1, 2

where β1 = β2 = 1, β3 = β4 = 0, x(1)
i1

iid∼ N(0, 1), and all other regressors are iid
Bino(1, 0.5). Note that the DGP is the same as for the benchmark case and the only
difference is that two additional regressors are included in the estimation.
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• Design 3: We keep the latent utility functions the same, while enlarge the choice set
to be {0, 1, 2, 3, 4}, i.e., we consider the design with

y∗i0 = 0

y∗ij = x
(1)
ij + β1x

(2)
ij + β2x

(3)
ij − εij, j = 1, 2, 3, 4

where β1 = β2 = 1, x(1)
i1

iid∼ N(0, 1), all other regressors are iid Bino(1, 0.5), and

(εi1, εi2, εi3, εi4)
iid∼ MVN




0

0

0

0




1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1




The results of these two experiments are summarized in Table 215 and 3, respectively.

Table 2: (Design 2) 3 Choices, 5 Regressors, 4 Parameters

β1 β2

Mean RMSE Median MAD Mean RMSE Median MAD

N = 250 0.0735 0.5245 0.0631 0.3830 0.0313 0.5453 0.0099 0.4151

N = 500 0.0551 0.4147 0.0259 0.2715 0.0824 0.4144 0.0727 0.2823

N = 1000 0.0294 0.3014 0.0033 0.2089 0.0302 0.2915 0.0039 0.1907

Table 3: (Design 3) 5 Choices, 3 Regressors, 2 Parameters

β1 β2

Mean RMSE Median MAD Mean RMSE Median MAD

N = 250 -0.1279 0.6581 -0.1686 0.5775 -0.0879 0.6473 -0.1160 0.5805

N = 500 -0.0955 0.6196 -0.1180 0.5200 -0.0459 0.6102 -0.0719 0.5025

N = 1000 -0.0372 0.5724 -0.0375 0.4604 -0.0334 0.5736 -0.0532 0.4670

N = 2000 0.0122 0.5099 -0.0057 0.3786 0.0132 0.4979 -0.0142 0.3601

As our results demonstrate, the performance is in line with the asymptotic theory.
Specifically, the cross-sectional estimator is root-n consistent as both the bias and RMSE
15To conserve space, we report only the results for β1 and β2.
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shrink at the parametric rate. This seems true regardless of the number of regressors,
though as expected performance for each sample size deteriorates with the number of
regressors. However, that is not the case as we increase the size of the choice set. As
seen in Table 3, with five choices, the finite sample performance is relatively poor, and
furthermore, does not improve with larger sample sizes as well as it did in the other
designs. Thus it appears to us that for this model the adversarial effects of dimensionality
lie in the choice dimension and not as much in the regressor dimension.16

We then turn to examine the finite sample properties of the maximum score estimators
for panel data multinomial choice models. We start from the static panel case and consider
the design (Design 4) with choice set {0, 1, 2} and a panel of two time period (T = 2). The
latent utility functions for individual i in time period t ∈ {1, 2} are

y∗i0t = 0

y∗ijt = x
(1)
ijt + β1x

(2)
ijt + β2x

(3)
ijt + αij − εijt, j = 1, 2

where β1 = β2 = 1, x(1)
i1t

iid∼ N(0, 1) for all t, all other regressors are iid Bino(1, 0.5), and

(εi11, εi21, εi12, εi22)
iid∼ MVN




0

0

0

0
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The fixed effects are generated as αi1 = T−1
∑T

t=1 xi1t and αi2 = T−1
∑T

t=1 xi2t − 0.5. In
Table 4 and 5, we report respectively the results for this static panel design using one-step
and two-step maximum score estimators.

Table 4: (Design 4) 3 Choices, 3 Regressors, 2 Parameters, 2 Periods

β1 β2

Mean RMSE Median MAD Mean RMSE Median MAD

N = 500 -0.0570 0.6118 -0.0918 0.5112 -0.0716 0.6110 -0.0661 0.5247

N = 1000 -0.0468 0.5860 -0.0647 0.4819 -0.0524 0.5843 -0.0650 0.4802

N = 2000 -0.0401 0.5673 -0.0544 0.4399 -0.0417 0.5587 -0.0644 0.4366

N = 5000 -0.0221 0.4932 -0.0476 0.3555 0.0044 0.4911 -0.0043 0.3682

N = 10000 0.0006 0.4530 -0.0109 0.3182 0.0084 0.4510 -0.0048 0.3235

16It is not too surprising that our localized estimator performs relatively better in Design 2 than in Design
3. To implement the proposed estimator, one need match (J − 2)× p regressors, where p is the number of
regressors associated with each alternative. This number for Design 2 is 5, while for Design 3 it is 9.
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Table 5: (Design 4, Two-step) 3 Choices, 3 Regressors, 2 Parameters, 2 Periods

β1 β2

Mean RMSE Median MAD Mean RMSE Median MAD

N = 500 -0.0539 0.6008 -0.0580 0.5144 -0.0562 0.5895 -0.0513 0.4842

N = 1000 -0.0413 0.5978 -0.0479 0.5134 -0.0497 0.5732 -0.0477 0.4717

N = 2000 -0.0252 0.5557 -0.0356 0.4311 0.0154 0.5632 0.0014 0.4465

N = 5000 0.0329 0.4930 -0.0033 0.3598 0.0017 0.4928 -0.0203 0.3568

N = 10000 0.0256 0.4438 0.0065 0.3149 0.0389 0.4415 0.0100 0.3131

Our dynamic panel design (Design 5) has the same choice set as the static design but
four time periods (T = 3, t ∈ {0, 1, 2, 3}). The latent utility functions are

y∗i0t = 0, t = 0, 1, 2, 3

y∗ij0 = x
(1)
ij0 + βx

(2)
ij0 + αij − εij0, j = 1, 2

y∗i1t = x
(1)
i1t + βx

(2)
i1t + γyi1(t−1) + αi1 − εi1t, t = 1, 2, 3

y∗i2t = x
(1)
i2t + βx

(2)
i2t + αi2 − εi2t, t = 1, 2, 3

where (β, γ) = (1, 0.5), yi1(t−1) = 1[ui1(t−1) > max{0, ui2(t−1)}], x(1)
i1t

iid∼ N(0, 1) for all t, all
other regressors are iid Bino(1, 0.5), and

(εi1t, εi2t) ∼MVN

((
0

0

)(
1 0.5

0.5 1

))

independent across i and over time. We use the same way to generate the fixed effects
as the static design. One-step and two-step estimation results for this design are summa-
rized in Table 6 and 7, respectively.

For the panel data results, the static panel data estimator also appears to be consistent
but appears to converge more slowly in terms of bias and RMSE. It takes samples sizes
that are larger than 2000 before the estimator performs adequately well. For the semi-
parametric dynamic panel data model, results seem worse still and appear to improve
even more slowly with increases in the sample size. In both cases, the two-step estimator
improves finite sample performance a little, particularly in the dynamic model.
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Table 6: (Design 5) 3 Choices, 3 Regressors, 2 Parameters, 4 Periods

β γ

Mean RMSE Median MAD Mean RMSE Median MAD

N = 500 0.0005 0.4706 0.0138 0.3331 -0.0281 0.5356 -0.0265 0.4465

N = 1000 0.0196 0.4850 0.0163 0.3551 -0.0491 0.5241 -0.0708 0.4160

N = 2000 0.0000 0.4685 0.0175 0.3616 -0.0610 0.5380 -0.0762 0.4194

N = 5000 -0.0190 0.4389 -0.0047 0.2614 -0.0348 0.5254 -0.0611 0.4289

N = 10000 -0.0226 0.4246 -0.0047 0.2451 -0.0665 0.5176 -0.0898 0.3846

Table 7: (Design 5, Two-step) 3 Choices, 3 Regressors, 2 Parameters, 4 Periods

β γ

Mean RMSE Median MAD Mean RMSE Median MAD

N = 500 0.0151 0.4786 0.0161 0.3242 -0.0290 0.5392 -0.0304 0.4356

N = 1000 0.0077 0.4571 0.0113 0.3158 -0.0665 0.5649 -0.0801 0.4641

N = 2000 0.0150 0.4583 0.0047 0.2914 -0.0586 0.5250 -0.0816 0.4092

N = 5000 0.0047 0.4218 0.0049 0.2488 -0.0538 0.5009 -0.0823 0.3597

N = 10000 0.0012 0.3959 -0.0005 0.2158 -0.0625 0.4795 -0.0921 0.3530

As a final component of our simulation study, we explore how the conditional Logit
estimator performs in the dynamic panel design. As the point identification of Logit does
not rely on the existence of a continuous regressor, we let all regressors in Design 5 be iid
with Bernoulli distribution. It is easy to show that the Logit estimator would be root-n
consistent17 if the conditional likelihood function is correctly specified. However, with
errors not satisfying the IIA property, we would expect the Logit estimator to be incon-
sistent. The simulation here aims to explore the sensitivity of the parametric estimator
to model misspecification. In Table 8 for Logit results, inconsistency is clearly demon-
strated with biases exceeding 50% even at sample sizes of 10000. The inconsistency is to

17Note that if we have one continuous regressor and use bandwidth hn = O(n−1/5), the Logit estimator is
asymptotically biased even if the model is correctly specified.
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be expected as the logit estimator is based on iid type 1 extreme value errors.

Table 8: (Design 5, Logit) 3 Choices, 3 Regressors, 2 Parameters, 4 Periods

β γ

Mean RMSE Median MAD Mean RMSE Median MAD

N = 500 0.6760 0.8963 0.6036 0.3433 1.5346 3.6605 0.4860 2.0067

N = 1000 0.6535 0.7731 0.6337 0.2569 1.8503 3.8376 2.0596 2.3813

N = 2000 0.5875 0.6585 0.5627 0.1903 1.8067 3.5593 1.4309 2.3469

N = 5000 0.5863 0.6171 0.5799 0.1302 1.6068 2.9385 0.8063 1.3635

N = 10000 0.5858 0.6052 0.5844 0.0994 1.0708 2.1002 0.5929 0.8105

5 Empirical Illustration

In this section we also illustrate the finite sample properties of our new rank estimator
by applying it to the often used optical scanner panel data set on purchases of saltine
crackers in the Rome (Georgia) market, that was collected by Information Resources In-
corporated. The data set contains information on all purchases of crackers (3292) of 136
households over a period of two years, including brand choice, actual price of the pur-
chased brand and shelf price of other brands, and whether there was a display and/or
newspaper feature of the considered brands at the time of purchase. A subset of this data
set was analyzed in Jain, Vilcassim, and Chintagunta (1994) as well as Paap and Frances
(2000).

Table 9: Data Characteristics of Saltine Crackers

Sunshine Keebler Nabisco Private
Market Share 0.07 0.07 0.54 0.32

Display 0.13 0.11 0.34 0.10
Feature 0.04 0.04 0.09 0.05

Average Price 0.96 1.13 1.08 0.68

Table 9 summarizes some data characteristics of saltine crackers. There are three major
national brands in the database: Sunshine, Keebler, and Nabisco, with market shares of
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7%, 7%, and 54%, respectively. Local brands are aggregated and referred to in the table
as “Private” label, which has a market share of 32%. The data set also includes three
explanatory variables, two of which are binary and one of which is continuous. The
first binary explanatory variable, which we will refer to as “display”, denotes whether
or not a brand was on special display at the store at the time of purchase. The second
binary explanatory variable, which we will refer to as “feature”, denotes whether or not
a brand was featured in a newspaper advertisement at the time of purchase. Table 9
reports fractions for the binary variables, so for example, the numbers in the “display”
row correspond to fractions of purchase occasions on which each brand is on display. The
third explanatory variable we will use is the “price” which corresponds to the price of a
brand. This explanatory variable has rich enough support in the data set that we feel that
treating it as a continuously distributed random variable is a reasonable approximation.
Table 9 reports the sample average of the price of each brand over the 3292 purchases.

There are two features of this data set that make it particularly suitable to apply our
semiparametric procedures. One is that there is one continuous regressor (price) which
is needed for point identification. Importantly, the other regressors are binary, so the
“matching” part of our procedure can be implemented relatively easily. The second im-
portant feature is that the data is actually a panel data set based on 136 households mak-
ing purchase decisions over a period of two years. Thus we can use this data to apply
both our cross-sectional (pooled) estimator as well as panel data (static and dynamic)
estimators.

Specifically, for this data set here, we apply our rank estimators to the multinomial
choice model with four choices and three regressors. As mentioned above, existing work
such as Jain et al. (1994) and Paap and Frances (2000) have used this data to estimate
parametric multinomial choice models. Thus our semiparametric approach would indicate
how sensitive their results and conclusions are to the strong assumptions they imposed,
either in the way of parametric assumptions such as multinomial probit specification,
and/or ignoring the unobserved heterogeneity that our fixed effect estimators allow for
in the panel data setting. This can be done by comparing the estimates we get for the
regression coefficients using our methods to those attained in Paap and Frances (2000).

In what follows, we denote the choice set as J = {1 = Nabisco, 2 = Sunshine, 3 =

Keebler, 4 = Private}. The observed choice and explanatory variables are measured as
follows: For each household i, brand j, and purchase t,

• yit: observed choice (= 1, 2, 3, or 4).

• x(1)
ijt : normalized “price” (mean = 0, std = 1).
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• x(2)
ijt : “display”, 0-1 valued.

• x(3)
ijt : “feature”, 0-1valued.

Note that the data set is an unbalanced panel with n = 136 households and T varying
with i (min{Ti} = 14, max{Ti} = 77).

Following Paap and Frances (2000), we model the latent utility of household i for
brand j in the t-th purchase as

y∗ijt = −x(1)
ijt + β1x

(2)
ijt + β2x

(3)
ijt − εijt

where the coefficient on x(1)
ijt is normalized to be−1, and (β1, β2) are regression coefficients

to be estimated. εijt is the unobserved scalar disturbance term.

To implement our cross-sectional rank estimator, we pool the cross-section (i) and
“time-series” (t) aspects of the panel. The estimation was implemented in R, using the
differential evolution algorithm to attain a global optimum of the objective function with
respect to the coefficients on “display” and “feature”. To construct the objective func-
tion we matched on the continuous variable (price) using a normal kernel function and
Silverman’s rule of thumb to pick the bandwidth. The computation was relatively fast -
the estimator of the two coefficients took only 3 minutes to attain using a MacBook Pro
laptop.

To attain confidence regions we employed the standard bootstrap by sampling from
the original data set (with replacement) and computing the rank estimator for each sam-
pled data set. Employing this for 500 sampled data sets took about 25 hours. Point es-
timates and confidence regions for each of the two coefficients on the binary regressors,
denoted respectively by β1 and β2, are reported in Table 10. For comparison purposes, the
table also reports results from estimators for two parametric models, multinomial Probit
and multinomial Logit. To compare parametric results to semiparametric ones, in the for-
mer case we report the ratio of coefficients of the binary regressors to the absolute value
of the coefficient on “price”.

Table 10: Parametric and Semiparametric Estimates for Cross Sectional Model

β1 95% CI of β1 β2 95 % CI of β2

Semiparametric 0.3331 (0.1010, 0.4918) 0.3081 (0.1006, 0.4978)
Multinomial Logit 0.1368 (-0.0480, 0.3215) 0.7381 (0.4268, 1.0495)
Multinomial Probit 0.0919 (-0.0855, 0.2693) 0.6185 (0.3090, 0.9280)
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As we can see, the results are strikingly different. For the parametric estimators for
multinomial Probit relative coefficients for display and feature are 0.1226 and 0.9608, re-
spectively. For multinomial Logit, they are 0.2150 and 1.1829. In each parametric set-
ting, the coefficient (ratio) on display is not significantly different from 0 at the 95% level,
whereas the coefficient on feature is significantly positive. For our semiparametric esti-
mates, the results are coefficient estimates of (0.3331, 0.3081). In contrast to the parametric
results, each coefficient is significantly positive at the 95% level.

Now we turn attention to the panel data features of the data set. For the static model,
we consider the following specification

y∗ijt = −x(1)
ijt + β1x

(2)
ijt + β2x

(3)
ijt + αij − εijt

where αij collects the individual and choice specific effects.

Employing our estimator, our results were (β̂1, β̂2) = (3.6924, 0.4472) with criterion
function = 864.0031 . These results are interesting when compared to results attained
using parametric and semiparametric estimators for the cross sectional model. In the
panel data model the coefficient on display is much larger than the coefficient on fea-
ture. This is in complete contrast to multinomial Probit and Logit where the coefficient
on display is not statistically different from 0 and the coefficient on feature is significantly
positive. The panel data estimates are also different from the semiparametric estimates
for the cross sectional model, where the coefficients on display and feature are virtually
identical. However, it should be emphasized that for panel data estimates we only re-
port point estimates and not confidence regions. This is because the limiting distribution
theorem of either panel estimator has not been derived, and we conjecture distribution
theory will be nonstandard so it is unlikely that the standard bootstrap can provide valid
confidence regions in this setting.

Table 11: Parametric and Semiparametric Estimates for Static Panel Data Model

β1 β2

Semiparametric 0.4489 0.4528
Conditional Logit -0.0639 0.5838

For each i and t ∈ {2, ..., Ti},

y∗i1t = −x(1)
i1t + β1x

(2)
i1t + β2x

(3)
i1t + γyi1(t−1) + αi1 − εi1t

y∗ijt = −x(1)
ijt + β1x

(2)
ijt + β2x

(3)
ijt − εijt, j = 2, 3, 4
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where as above yi1t = 1[yit = 1].

Employing each of our two estimators for the dynamic model, our estimation results
were (β̂1, β̂2, γ̂) = (1.5041, 1.4408, 0.5710) with criterion function = 3.118645 for the semi-
parametric estimator, and (β̂1, β̂2, γ̂) = (0.1274, 1.6865, 0.6185) for the Logit. Note for both
the semiparametric and Logit estimates the first two estimated coefficients are very dif-
ferent when compared to the static model, indicating the dynamic specification may be
relevant for this data set, and ignoring this aspect can lead to misspecification. This point
is consistent with the estimated coefficient on lagged choice being quite different from
zero, indicating “persistence” in consumer behavior for this product.

Table 12: Parametric and Semiparametric Estimates for Dynamic Panel Data Model

β1 β2 γ

Semiparametric 0.6024 1.2716 0.4005
Conditional Logit 0.8270 2.2931 1.2091

6 Conclusions

In this paper we proposed new estimation procedures for semiparametric multinomial
choice models. For the cross-sectional model we proposed a local rank based procedure,
which was shown to be root-n consistent and asymptotically normal, even in designs
where no smoothing parameters were required. The pairwise differencing is readily ex-
tended to time differencing, enabling a consistent estimator for a panel data estimator of
a model with choice and individual specific effects. Furthermore we attain a new iden-
tification result for a dynamic multinomial choice model with lagged discrete dependent
variables, and proposed new consistent estimators for the coefficients on coefficients on
the lagged dependent variables.

The work here leaves many open areas for future research. For example limiting distri-
bution theory needs to be established for the panel data estimators. Also, as pointed out,
in both panel data settings the propose procedure suffers from a curse of dimensionality
in the number of choices. It is thus an open question if our proposed approach result in a
rate optimal estimator. Rate optimality for dynamic binary choice models was discussed
in Seo and Otsu (2018), but such bounds are lacking in the multinomial case.
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A Static and Dynamic Panel Data Estimators

A.1 Static Panel Data Estimators

A.1.1 Consistency

Let Ω denote the event x2(12) = 0. To simplify notation, we define z1 = x2(12), z2 = y1(12),
z3 = x1(12),

Q(b) = f(0)E[ρ(b)|Ω]

Qn(b) =
1

nhpn

n∑
i=1

K(z1i/hn)ρi(b)

and
ϕ(·) = f(·)E[ρ(b)|z1 = ·]

In what follows, we focus on the case where B ⊂ {b ∈ Rp : b1 = 1}. The case with
B ⊂ {b ∈ Rp : b1 = −1} is symmetric.

Lemma A.1. Under Assumptions SP3 - SP6, Q(β0) > Q(b) for all b ∈ B \ {β0}.

Proof of Lemma A.1. Denote Zb = {z3 : sgn(z′3b) 6= sgn(z′3β0)} for all b ∈ B \ {β0}. Note that
P (z̃′3b̃ = z̃′3β̃0|Ω) < 1 by Assumption SP5, and P (z

(1)
3 ∈ N|z̃3,Ω) > 0 by Assumption SP4,

where N = {−z̃′3b̃ < z
(1)
3 < −z̃′3β̃0} ∪ {−z̃′3β̃0 < z

(1)
3 < −z̃′3b̃}. Therefore,

P (Zb|Ω) = P (z
(1)
3 ∈ N|z̃′3b̃ 6= z̃′3β̃0,Ω)P (z̃′3b̃ 6= z̃′3β̃0|Ω) > 0

Then, we have

Q(β0)−Q(b)

=f(0)E[z2(sgn(z′3β0)− sgn(z′3b))|Ω]

=2f(0)

∫
Zb
sgn(z′3β0)E[z2|z3,Ω]dFz3|Ω

=2f(0)

∫
Zb
sgn(z′3β0)E[E[z2|x, α,Ω]|z3,Ω]dFz3|Ω

=2f(0)

∫
Zb
E[sgn(z′3β0)(P (y11 = 1|x, α,Ω)− P (y12 = 1|x, α,Ω))|z3,Ω]dFz3|Ω

Next, note that by definition,

P (y11 = 1|x, α,Ω) = P (x′11β0 + α1 − ε11 > max{0, x′21β0 + α2 − ε21}|x, α,Ω)
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and

P (y12 = 1|x, α,Ω) = P (x′12β0 + α1 − ε12 > max{0, x′22β0 + α2 − ε22}|x, α,Ω)

Hence, by Assumption SP3, we have sgn(P (y11 = 1|x, α,Ω) − P (y12 = 1|x, α,Ω)) =

sgn(z′3β0). Furthermore, P (y11 = 1|x, α,Ω) = P (y12 = 1|x, α,Ω) if and only if z′3β0 = 0

which is an event having zero probability measure under Assumption SP4. Then,

E[sgn(z′3β0)(P (y11 = 1|x, α,Ω)− P (y12 = 1|x, α,Ω))|z3,Ω]

=E[|sgn(z′3β0)(P (y11 = 1|x, α,Ω)− P (y12 = 1|x, α,Ω))||z3,Ω]

=E[|P (y11 = 1|x, α,Ω)− P (y12 = 1|x, α,Ω)||z3,Ω] > 0

and the desired result follows from Assumption SP6.

Proof of Theorem 3.1. The proof proceeds by verifying the four sufficient conditions for
Theorem 9.6.1 in Amemiya (1985): (C1) B is a compact set, (C2) Qn(b) is a measurable
function for all b ∈ B, (C3) Qn(b) converges in probability to a nonstochastic function Q(b)

uniformly for all b ∈ B, (C4) Q(b) is continuous in b and is uniquely maximized at β0.

The compactness of B is satisfied by construction. Condition (C2) holds trivially.
Lemma A.1 above has shown that the identification condition in (C4) holds. Next, the
continuity of Q(b) is a result from Assumption SP4. To see this, first note that Q(b) can be
expressed as the sum of functions w.r.t. b of the following form: For some (d1, d2) ∈ {0, 1}2,

P (y11 = d1, y12 = d2, x
(1)
1(12) + x̃′1(12)b̃ > 0|Ω)

=

∫
x̃1(12)

∫
−x̃′

1(12)
b̃

P (y11 = d1, y12 = d2|x,Ω)f
x
(1)
1(12)

|x̃1(12),Ω
(v)dvdFx̃1(12)|Ω

Then, Q(b) is continuous if f
x
(1)
1(12)

|x̃1(12),Ω
(·) does not have any mass points, which is guar-

anteed by Assumption SP4.

The remaining task is to verify the uniform convergence condition (C3), i.e.,

sup
b∈B
|Qn(b)−Q(b)| = op(1)

This can be done by showing supFn |Qn(b)−EQn(b)| = op(1) and supb∈B |Q(b)−EQn(b)| =
o(1), where Fn denotes the class of functions as Fn = {K(z1/hn)ρ(b) : b ∈ B}.

First, note that Fn ⊂ F = {K(z1/h)ρ(b) : h > 0, b ∈ B} = Fh × Fb where Fh =

{K(z1/h) : h > 0} and Fb = {ρ(b) : b ∈ B}. By Assumption SP8(i) and Lemma 22(ii)
in Nolan and Pollard (1987), Fh is Euclidean for the constant envelope supv∈Rp |K(v)| <
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∞. Then, as Fb is Euclidean for the constant envelope 1 (see Example 2.11 in Pakes and
Pollard (1989)), F is Euclidean for the constant envelope supv∈Rp |K(v)| < ∞. Next, note
that by Assumptions SP6 and SP8(ii),

sup
Fn

E|K(z1/hn)ρ(b)| = sup
Fn

∫
E[|K(z1/hn)ρ(b)||z1]f(z1)dz1

= sup
Fn

hpn

∫
K(v)E[|ρ(b)||z1 = vhn]f(vhn)dv

≤ sup
Fn

hpn

∫
K(v)f(vhn)dv = O(hpn)

Then, under Assumption SP9(ii), applying Lemma 5 in Honoré and Kyriazidou (2000)
yields

sup
Fn

hpn|Qn(b)− EQn(b)| = Op

(√
hpn log n

n

)
= op(h

p
n)

As the final step, we show that supb∈B |Q(b)−EQn(b)| = o(1). Notice that by Assumptions
SP7, SP8(ii), SP8(iii), and SP9(i),

sup
b∈B
|Q(b)− EQn(b)| = sup

b∈B
|ϕ(0)− h−pn

∫
K(z1/hn)ϕ(z1)dz1|

= sup
b∈B
|ϕ(0)− h−pn

∫
K(z1/hn)[ϕ(0) + ϕ(1)(ζ)′z1]dz1|

= sup
b∈B
|ϕ(0)−

∫
K(v)[ϕ(0) + ϕ(1)(vn)′vhn]dv|

= sup
b∈B
|hn
∫
K(v)ϕ(1)(vn)′vdv|

≤ hn sup
b∈B

∫
K(v)|ϕ(1)(vn)|1|v|1dv

= O(hn) = o(1)

where | · |1 denotes the l1 norm of a vector. Therefore,

sup
b∈B
|Qn(b)−Q(b)| ≤ sup

Fn
|Qn(b)− EQn(b)|+ sup

b∈B
|Q(b)− EQn(b)| = op(1)

which complete the proof.

A.1.2 Rate of Convergence

Proof of Theorem 3.2. Denote z = (z′1, z2, z
′
3)′. To facilitate exposition, we consider the fol-

lowing objective function of the estimator β̂:

gn,b(z) = h−(J−1)p
n K(z1/hn)z2[sgn(z′3b)− sgn(z′3β0)] = κn(z)(1[z′3b > 0]− 1[z′3β0 > 0])
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where κn(z) = 2h
−(J−1)p
n K(z1/hn)z2. By definition and change of variables, we have

E[κn(z)2|z3] = 4h−(J−1)p
n

∫
K(v)2fz1|z2 6=0,z3(vhn)P (z2 6= 0|z3)dv

almost surely for all n. Under Assumptions SP3, SP6’, and SP8’(i), there exist some c1, c2 >

0 such that c1 < h
(J−1)p
n E[κn(z)2|z3] < c2 almost surely. Then, using the same argument in

Seo and Otsu (2018) (Section B.1 of the supplementary material), we have for all b1, b2 ∈ B,

h(J−1)p/2
n ‖(gn,b1(z)− gn,b2(z)‖2

=E[h(J−1)p
n κn(z)2(1[z′3b1 > 0]− 1[z′3b2 > 0])2]1/2

=E[h(J−1)p
n E[κn(z)2|z3](1[z′3b1 > 0]− 1[z′3b2 > 0])2]1/2

= ≥ c
1/2
1 E|1[z′3b1 > 0]− 1[z′3b2 > 0]| � |b1 − b2|2 (A.1)

where ‖ · ‖2 denotes the L2(P ) norm. Similarly, we can obtain

h(J−1)p
n E[ sup

b∈B:|b−β|2<ε
|gn,b(z)− gn,β(z)|2]

=E[h(J−1)p
n E[|κn(z)|2|z3] sup

b∈B:|b−β|2<ε
|1[z′3b > 0]− 1[z′3β > 0)|2]

≤c2E sup
b∈B:|b−β|2<ε

|1[z′3b > 0]− 1[z′3β > 0]| ≤ c′2ε (A.2)

for some c′2 > 0, sufficiently large n, and all β in a neighborhood of β0.

Next, note that under Assumptions SP8’(ii)-(iv), SP7’, and SP9’(iii), we have

E[gn,b(z)] =

∫
K(v)E[z2(sgn(z′3b)− sgn(z′3β0))|z1 = vhn]fz1(vhn)dv

=fz1(0)E[z2(sgn(z′3b)− sgn(z′3β0))|z1 = 0]

+ h2
n

∫
K(v)v′

∂2fz1(τ)E[z2(sgn(z′3b)− sgn(z′3β0))|z1 = τ ]

∂τ∂τ ′
|τ=v̄vdv

=fz1(0)E[z2(sgn(z′3b)− sgn(z′3β0))|z1 = 0] + o((nh(J−1)p
n )2/3) (A.3)

where v̄ is a point on the line joining 0 and vhn, and the second equality follows from the
dominated convergence theorem and mean value theorem.

Denote Zb = {z3 : sgn(z′3b) 6= sgn(z′3β0)} for all b ∈ B \ {β0}. Following similar
argument used in the proof of Lemma A.4,

−E[z2(sgn(z′3b)− sgn(z′3β0))|z1 = 0] = 2

∫
Zb
sgn(z′3β0)E[z2|z3, z1 = 0]dFz3|z1=0

= 2

∫
Zb
|E[z2|z3, z1 = 0]|dFz3|z1=0 > 0
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Therefore, applying the same argument as Kim and Pollard (1990) pp. 214-215 yields

∂

∂b
E[z2(sgn(z′3b)|z1 = 0]|b=β0 = 0 (A.4)

and

− ∂2E[z2(sgn(z′3b)− sgn(z′3β0))|z1 = 0]

∂b∂b′

=

∫
1[z′3β0 = 0]

(
∂

∂z3

E[z2|z3, z1 = 0]

)′
β0z3z

′
3fz3|z1=0(z3)dµβ0 (A.5)

where µβ0 is the surface measure on the boundary of {z3 : z′3β0 ≥ 0}.

Putting (A.3), (A.4), and (A.5) together, we have

E[gn,β(z)] =
1

2
(b− β0)′V (b− β0) + o(|b− β0|22) + o((nh(J−1)p

n )2/3) (A.6)

where

V = −2fz1(0)

∫
1[z′3β0 = 0]

(
∂

∂z3

E[z2|z3, z1 = 0]

)′
β0z3z

′
3fz3|z1=0(z3)dµβ0

Notice that h(J−1)p
n gn,b(z) is uniformly bounded by Assumption SP8’(i) and limn→∞Egn,b(z)

is uniquely maximized at β0 by Lemma A.1. Then, putting (A.1), (A.2), and (A.6) together,
by Lemma 1 of Seo and Otsu (2018), we can conclude that there exists some positive con-
stant C for each ε > 0 such that∣∣∣∣∣ 1n

n∑
i=1

gn,b(zi)− E[gn,b(z)]

∣∣∣∣∣ ≤ ε|b− β0|22 +Op

((
nh(J−1)p

n

)−2/3
)

(A.7)

for all b ∈ {B : (nh
(J−1)p
n )−1/3 ≤ |b − b0|2 ≤ C}. Then, assuming |b − b0|2 ≥ (nh

(J−1)p
n )−1/3,

we have, by (A.7) and (A.3),

1

n

n∑
i=1

gn,β̂(zi) ≤ E[gn,β̂(z)] + ε|β̂ − β0|22 +Op((nh
(J−1)p
n )−2/3)

≤ (ε− C ′)|β̂ − β0|22 + o(|β̂ − β0|22) +Op((nh
(J−1)p
n )−2/3) (A.8)

for each ε > 0 and some positive constant C ′. By the definitions of β̂ and gn,b(·),

1

n

n∑
i=1

gn,β̂(zi) =
1

n

n∑
i=1

gn,β̂(zi)−
1

n

n∑
i=1

gn,β0(zi) ≥ op((nh
(J−1)p
n )−2/3) (A.9)

Then, the desired result follows from taking ε sufficiently small such that ε − C ′ < 0 and
combining (A.8) and (A.9).
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A.2 Dynamic Panel Data Estimators

Here, we only establish regularity conditions and prove consistency of our dynamic panel
data estimator, as consistency for the static model follows as a special case.

Consider the events:

A = {y10 = d0, y11 = 1, y12 = 0, y13 = d3}
B = {y10 = d0, y11 = 0, y12 = 1, y13 = d3}

where d0 and d3 are either 0 or 1. In what follows, denote z = (x′1(12), y1(03))
′.

Lemma A.2. Under Assumption DP3, sgn(P (A|x, α,Ω)− P (B|x, α,Ω)) = sgn(z′θ0).

Proof of Lemma B.1. By Assmption DP3, we have

P (A|x, α,Ω) =P (y10 = 1|x, α,Ω)d0(1− P (y10 = 1|x, α,Ω))1−d0

× P (x′11β0 + γ0d0 + α1 − ε11 > max{x′21β0 + α2 − ε21, 0}|x, α,Ω)

× (1− P (x′12β0 + γ0 + α1 − ε12 > max{x′21β0 + α2 − ε22, 0}|x, α,Ω))

× P (x′12β0 + α1 − ε13 > max{x′21β0 + α2 − ε23, 0}|x, α,Ω)d3

× (1− P (x′12β0 + α1 − ε13 > max{x′21β0 + α2 − ε23, 0}|x, α,Ω))1−d3

and similarly,

P (B|x, α,Ω) =P (y10 = 1|x, α,Ω)d0(1− P (y10 = 1|x, α,Ω))1−d0

× (1− P (x′11β0 + γ0d0 + α1 − ε11 > max{x′21β0 + α2 − ε21, 0}|x, α,Ω))

× P (x′12β0 + α1 − ε12 > max{x′21β0 + α2 − ε22, 0}|x, α,Ω)

× P (x′12β0 + γ0 + α1 − ε13 > max{x′21β0 + α2 − ε23, 0}|x, α,Ω)d3

× (1− P (x′12β0 + γ0 + α1 − ε13 > max{x′21β0 + α2 − ε23, 0}|x, α,Ω))1−d3

It is not hard to verify that

P (A|x, α,Ω)

P (B|x, α,Ω)
> 1⇔ x′11β0 + γ0d0 > x′12β0 + γ0d3

for each of the 4 cases corresponding to the values of d0 and d3. Then, the desired result
follows.

In what follows, we focus on the case where Θ ⊂ {θ = (b′, g)′ ∈ Rp+1 : b1 = 1}. The
case with Θ ⊂ {θ = (b′, g)′ ∈ Rp+1 : b1 = −1} is symmetric.
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Lemma A.3. Under Assumptions DP3 - DP5, P (sgn(z′θ) 6= sgn(z′θ0)|Ω) > 0 for all θ ∈
Θ \ {θ0}.

Proof of Lemma B.2. To prove the statement in the lemma, it suffices to show that for all
θ ∈ Θ \ {θ0}, (i) P (z̃′θ̃ 6= z̃′θ̃0|Ω) > 0, and (ii) P (x

(1)
1(12) ∈ N|x̃1(12), y10 = d0, y13 = d3,Ω) > 0

for all (d0, d3) ∈ {0, 1}2 and for any proper interval N on the real line.

(i) If g = γ0, then P (z̃′θ̃ = z̃′θ̃0|Ω) = P (x̃′1(12)(b̃ − β̃0) = 0|Ω) < 1 by DP5. For the case
with g 6= γ0,

P (z̃′θ̃ = z̃′θ̃0|Ω)

=
∑

d0∈{0,1}

∫
P ((g − γ0)y13 = (γ0 − g)d0 + x̃′1(12)(β̃0 − b̃)|y10 = d0, x̃1(12),Ω)

× P (y10 = d0|x̃1(12),Ω)dFx̃1(12)|Ω

By Assumption DP3, P ((g−γ0)y13 = (γ0− g)d0 + x̃′1(12)(β̃0− b̃)|y10 = d0, x̃1(12),Ω) < 1

for all d0 ∈ {0, 1}, and hence P (z̃′θ̃ 6= z̃′θ̃0|Ω) > 0.

(ii) For any given d0 and d3, by Bayes’ theorem,

P (x
(1)
1(12) ∈ N|x̃1(12), y10 = d0, y13 = d3,Ω)

=
P (y10 = d0, y13 = d3|x̃1(12), x

(1)
1(12) ∈ N ,Ω)P (x

(1)
1(12) ∈ N|x̃1(12),Ω)

P (y10 = d0, y13 = d3|x̃1(12),Ω)

Assumption DP4 guarantees that P (x
(1)
1(12) ∈ N|x̃1(12),Ω) > 0. Furthermore, note that

P (y10 = d0, y13 = d3|x̃1(12), x
(1)
1(12) ∈ N ,Ω)

=

∫
P (y13 = d3|x, α, y10 = d0, x̃1(12), x

(1)
1(12) ∈ N ,Ω)

× P (y10 = d0|x, α, x̃1(12), x
(1)
1(12) ∈ N ,Ω)dF

x,α|x̃1(12),x
(1)
1(12)

∈N ,Ω

=
∑

(d1,d2)∈{0,1}2

∫
P (y13 = d3|x, α, y10 = d0, y11 = d1, y12 = d2, x̃1(12), x

(1)
1(12) ∈ N ,Ω)

× P (y12 = d2|x, α, y10 = d0, y11 = d1, x̃1(12), x
(1)
1(12) ∈ N ,Ω)

× P (y11 = d1|x, α, y10 = d0, x̃1(12), x
(1)
1(12) ∈ N ,Ω)

× P (y10 = d0|x, α, x̃1(12), x
(1)
1(12) ∈ N ,Ω)dF

x,α|x̃1(12),x
(1)
1(12)

∈N ,Ω

Therefore, P (y10 = d0, y13 = d3|x̃1(12), x
(1)
1(12) ∈ N ,Ω) > 0 by Assumption DP3, and

hence P (x
(1)
1(12) ∈ N|x̃1(12), y10 = d0, y13 = d3,Ω) > 0.
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Then, the desired result follows by lettingN = {−z̃′θ̃0 < x
(1)
1(12) < −z̃′θ̃} ∪ {−z̃′θ̃ < x

(1)
1(12) <

−z̃′θ̃0}.

Define the population objective function:

Q(θ) = f(0)E[ψ(θ)|Ω]

The following lemma establish the point identification of θ0 relative to all θ ∈ Θ \ {θ0}.

Lemma A.4. Under Assumptions DP3 - DP6, Q(θ0) > Q(θ) for all θ ∈ Θ \ {θ0}.

Proof of Lemma B.3. Recall that ψ(θ) = y1(12)sgn(x′1(12)b + gy1(03)) = y1(12)sgn(z′θ) for all
θ ∈ Θ. Let Zθ ≡ {z : sgn(z′θ) 6= sgn(z′θ0), θ ∈ Θ \ {θ0}}. Lemma A.3 shows that
P (Zθ|Ω) > 0. Then, by definition,

Q(θ0)−Q(θ)

=f(0)E[y1(12)(sgn(z′θ0)− sgn(z′θ))|Ω] (A.10)

=2f(0)

∫
Zθ
sgn(z′θ0)E[y1(12)|z,Ω]dFz|Ω

=2f(0)

∫
Zθ
sgn(z′θ0)E[E[y1(12)|x, α, y10 = d0, y13 = d3,Ω]|z,Ω]dFz|Ω

=2f(0)

∫
Zθ
sgn(z′θ0)E[E[1[y11 = 1, y12 = 0]|x, α, y10 = d0, y13 = d3,Ω]

− E[1[y11 = 0, y12 = 1]|x, α, y10 = d0, y13 = d3,Ω]|z,Ω]dFz|Ω

=2f(0)

∫
Zθ
sgn(z′θ0)E[P (y11 = 1, y12 = 0|x, α, y10 = d0, y13 = d3,Ω)

− P (y11 = 0, y12 = 1|x, α, y10 = d0, y13 = d3,Ω)|z,Ω]dFz|Ω

=2f(0)

∫
Zθ
E

[
sgn(z′θ0)

(
P (A|x, α,Ω)− P (B|x, α,Ω)

P (y10 = d0, y13 = d3|x, α,Ω)

)
|z,Ω

]
dFz|Ω

It follows from Lemma A.2 that

sgn(z′θ0)

(
P (A|x, α,Ω)− P (B|x, α,Ω)

P (y10 = d0, y13 = d3|x, α,Ω)

)
≥ 0

and hence

E

[
sgn(z′θ0)

(
P (A|x, α,Ω)− P (B|x, α,Ω)

P (y10 = d0, y13 = d3|x, α,Ω)

)
|z,Ω

]
=E

[∣∣∣∣sgn(z′θ0)

(
P (A|x, α,Ω)− P (B|x, α,Ω)

P (y10 = d0, y13 = d3|x, α,Ω)

)∣∣∣∣ |z,Ω]
=E

[∣∣∣∣P (A|x, α,Ω)− P (B|x, α,Ω)

P (y10 = d0, y13 = d3|x, α,Ω)

∣∣∣∣ |z,Ω] ≥ 0
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Note that the expectation above is strictly positive for almost all z since P (A|x, α,Ω) −
P (B|x, α,Ω) = 0 if and only if sgn(z′θ0) = 0 which is an event having zero probability
measure under Assumption DP4. It then follows from Lemma A.3 and Assumption DP6
that Q(θ0)−Q(θ) > 0 for all θ ∈ Θ \ {θ0}.

To simplify notation, we define

Qn(θ) =
1

nh3p
n

n∑
i=1

K(∆xi/hn)ψi(θ)

and
φ(·) = f(·)E[ψ(θ)|x2(12) = x2(23) = x1(23) = ·]

Proof of Theorem 3.3. The proof proceeds by verifying the following conditions for Theo-
rem 9.6.1 in Amemiya (1985): (C1) Θ is a compact set, (C2) Qn(θ) is a measurable function
for all θ ∈ Θ, (C3) Qn(θ) converges in probability to a nonstochastic function Q(θ) uni-
formly in θ ∈ Θ, (C4) Q(θ) is continuous in θ and is uniquely maximized at θ0.

The compactness of Θ is satisfied by construction. Condition (C2) holds trivially.
Lemma B.3 above has shown that the identification condition in (C4) holds. Next, the
continuity of Q(θ) is guaranteed by Assumptions DP3 and DP4. To see this, first note that
Q(θ) can be expressed as the sum of functions (with respect to θ) of the following form:

P (y11 = d1, y12 = d2, x
(1)
1(12) + x̃′1(12)b̃+ g(y10 − y13) > 0|Ω)

=
∑

(d0,d3)∈{0,1}2

∫
x̃1(12)

[∫
−x̃′

1(12)
b̃−g(d0−d3)

P (y11 = d1, y12 = d2|x, y10 = d0, y13 = d3,Ω)

×f
x
(1)
1(12)

|x̃1(12),y10=d0,y13=d3,Ω
(v)dv

]
dFx̃1(12)|y10=d0,y13=d3,Ω × P (y10 = d0, y13 = d3|Ω)

Then, the function above is continuous if f
x
(1)
1(12)

|x̃1(12),y10=d0,y13=d3,Ω
(·) does not have any

mass points, which is implied by Assumptions DP3, DP4, and Bayes’ theorem.

The remaining step is to verify the uniform convergence condition (C3), i.e.,

sup
θ∈Θ
|Qn(θ)−Q(θ)| = op(1)

This can be done by showing supFn |Qn(θ)−EQn(θ)| = op(1) and supθ∈Θ |EQn(θ)−Q(θ)| =
o(1), where Fn denotes the class of functions as Fn = {K(∆x/hn)ψ(θ) : θ ∈ Θ}.

It is clear that Fn ⊂ F ≡ {K(∆x/h)ψ(θ) : h > 0, θ ∈ Θ} = Fh × Fθ with Fh ≡
{K(∆x/h) : h > 0} and Fθ ≡ {ψ(θ) : θ ∈ Θ}. By Assumption DP8(i) and Lemma 22(ii) in
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Nolan and Pollard (1987), Fh is Euclidean for the constant envelope supv∈R3p |K(v)| <
∞. Furthermore, as Fθ is Euclidean for the constant envelope supθ∈Θ |ψ(θ)| = 1 (see
Example 2.11 in Pakes and Pollard (1989)), F is Euclidean for the constant envelope
supv∈R3k |K(v)| <∞. Next, note that by Assumptions DP6 and DP8(ii),

sup
Fn

E|K(∆x/hn)ψ(θ)| = sup
Fn

∫
[E|K(∆x/hn)ψ(θ)||∆x]f(∆x)d∆x

= sup
Fn

h3p
n

∫
K(v)[E|ψ(θ)||∆x = vhn]f(vhn)dv

≤ sup
Fn

h3p
n

∫
K(v)f(vhn)dv = O(h3p

n )

Then, under Assumption DP9(ii), we obtain by applying Lemma 5 in Honoré and Kyri-
azidou (2000) that

sup
Fn

h3p
n |Qn(θ)− EQn(θ)| = Op

√h3p
n log n

n

 = op(h
3p
n )

Next, we show that supθ∈Θ |EQn(θ) − Q(θ)| = o(1). Notice that by Assumptions DP7,
DP8(ii), DP8(iii), and DP9(i),

sup
θ∈Θ
|EQn(θ)−Q(θ)| = sup

θ∈Θ
| 1

h3p
n

∫
K(∆x/hn)φ(∆x)d∆x− φ(0)|

= sup
θ∈Θ
| 1

h3p
n

∫
K(∆x/hn)[φ(0) + φ(1)(ζ)′∆x]d∆x− φ(0)|

= sup
θ∈Θ
|φ(0)

∫
K(v)dv + hn

∫
K(v)φ(1)(vn)′vdv − φ(0)|

= sup
θ∈Θ
|hn
∫
K(v)φ(1)(vn)′vdv|

≤ hn

∫
K(v)|φ(1)(vn)|1|v|1dv

= O(hn) = o(1)

where | · |1 denotes the l1 norm of a vector. Therefore,

sup
θ∈Θ
|Qn(θ)−Q(θ)| ≤ sup

Fn
|Qn(θ)− EQn(θ)|+ sup

θ∈Θ
|EQn(θ)−Q(θ)| = op(1)

and the desired result follows.
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