Algebra Qualifying Examination, Fall 2019

Instuctions: This is a 3 hour examination. In the problems below, all rings are commutative with identity unless specified otherwise. This is a closed book exam, also no notes, searching the web, or otherwise consulting external sources. Good luck!

1. Let P be a finite p-group. Show that P is not cyclic if and only if P has a quotient isomorphic to $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
2. Let R be a commutative ring with unity.
(a) Let S be a non-empty saturated multiplicative set in R, i.e. if $a, b \in R$, then $a b \in S$ if and only if $a, b \in S$. Show that $R-S$ (the complement of S in R) is a union of prime ideals.
(b) Suppose that R is a domain such that every nonzero prime ideal in R contains a prime element. Show that R is a UFD. Hint: Use part (a). (Remark: the converse is also true, but not part of this problem.)
3. (a) Show that every A in the group $G L_{N}(\mathbb{C})$ that is of finite order is conjugate to a diagonal matrix.
(b) If F is an algebraically closed field and $A \in G L_{N}(F)$ is of finite order, is A always conjugate to a diagonal matrix? Why or why not?
4. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $n \geq 4$ and let K be a splitting field for $f(x)$ over \mathbb{Q}. Suppose that the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$ is S_{n}. If $\alpha \in K$ is a root of $f(x)$ show that $\alpha^{n} \notin \mathbb{Q}$.

5 . Let k be a field and $k[x, y]$ the polynomial ring in two variables. Let I be the principle ideal generated by $x^{2}-y^{2}(1+y)$.
(a) Show that $R=k[x, y] / I$ is an integral domain.
(b) Describe the integral closure A of R in its field of fractions F explicitly by giving one or more elements of F that generate A over R, and prove your answer.
6. Let A, B be two finitely generated \mathbb{Z}-modules. Prove that $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ if $n>1$.
7. Let V be a vector space over a field k and let v_{1}, \ldots, v_{n} be linearly independent vectors in V. Let $p \geq 2$, and $w \in \wedge^{p}(V)$. Prove that $v_{1} \wedge \cdots \wedge v_{n} \wedge w=0$ if and only if there exist $y_{1}, \ldots, y_{n} \in \wedge^{p-1} V$ such that $w=\sum_{i=1}^{n} v_{i} \wedge y_{i}$.
8. Let R be an integral domain, let m be a maximal ideal in R and set $k=R / m$. Let P and Q be finitely generated R-modules and $\phi: P \rightarrow Q$ a map of R-modules. Suppose that the induced map $P / m P \rightarrow Q / m Q$ is a surjection of k-vector spaces. Prove that there is an element $f \in R$, whose image in k is nonzero, such that the map $\phi_{f}: P_{f} \rightarrow Q_{f}$ is a surjection of R_{f}-modules. (The subscript f denotes localization at the multiplicative set $\left\{1, f, f^{2}, f^{3}, \ldots\right\}$.)

