ALGEBRA QUALIFYING EXAM – SPRING 2017

Problem 1. Prove that an Artinian ring has finitely many maximal ideals.

Problem 2. Let \mathbb{F} be a finite field with $|\mathbb{F}| = q$. Consider the subgroup

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{F}^{\times}, \ b \in \mathbb{F} \right\} < \operatorname{GL}_2(\mathbb{F}).$$

Show that for any prime p dividing q-1, the number of Sylow p-subgroups of G is q.

Problem 3. Let R be a UFD and a, b be coprime elements in R. For all $i \ge 0$, compute

$$\operatorname{Tor}_{i}^{R/(ab)}(R/(a), R/(b)).$$

Problem 4. Let F be a field, and D be an integral domain containing F. Suppose D is finite dimensional as a vector space over F. For each $x \in D$, define the F-linear transformation $T_x: D \to D$ by $T_x(y) = xy$.

(a) Prove that D is a field.

(b) Suppose $p = \operatorname{char}(F) > 0$ and $\alpha \in D$ is purely inseparable over F. This means that the minimal polynomial of α over F is $T^{p^e} - r$ for some $r \in F$ and $e \ge 1$. Describe the Jordan canonical form of T_{α} over the algebraic closure of F.

Problem 5. Let K be a field of characteristic p > 0 and F = K(t) where t is a variable. Let $f(x) = x^{2p} - tx^p + t \in F[x]$.

(a) Show that f(x) is irreducible in F[x].

(b) Let E = F[s] where s is a root of the polynomial $(x^p - t) \in F[x]$. If L is the splitting field of f(x) over E, show that $[L:E] \leq 2$.

(c) Show that $L = F[\alpha]$, where α is a root of f(x).

Problem 6. Prove that a flat finitely-generated module over a Noetherian local ring is free.

Problem 7. Let p be a prime integer, and q be a power of p. Let \mathbb{F}_q be the finite field with q elements, and \mathbb{F}_{q^n} be the degree n extension of \mathbb{F}_q . Consider the map $N \colon \mathbb{F}_{q^n} \to \mathbb{F}_q$ defined by $N(x) = x^{1+q+\dots+q^{n-1}}$.

(a) Prove that N is surjective. (*Hint*: Recall that $\mathbb{F}_{q^n}^*$ is a cyclic group of order $q^n - 1$.)

(b) Prove that $N^{-1}(1)$ spans \mathbb{F}_{q^n} as an \mathbb{F}_q -vector space.

Problem 8. Suppose k is a field. Let $R = k[s^4, s^3t, st^3, t^4] \subset k[s, t]$.

(1) Compute the Krull dimension of R.

(2) Prove that R is not Cohen-Macaulay. (*Hint*: Consider R/s^4R .)

Date: May 24, 2017.