ALGEBRA QUALIFYING EXAM FALL 2018

Exercise 1. Suppose p is a prime. Show that the Galois group of $x^5 - 1 \in \mathbb{F}_p[x]$ depends only on $p \pmod{5}$, and compute it for each congruence class of $p \pmod{5}$.

Exercise 2. Let R be a Dedekind domain with field of fractions K Show that for any two proper fractional ideals I, J there are $\alpha, \beta \in K$ with $\alpha I, \beta J \subseteq R$ integral and $\alpha I + \beta J = R$.

Exercise 3. Suppose that R is a Noetherian ring and $\mathfrak{p} \subseteq R$ is a prime ideal such that $R_{\mathfrak{p}}$ is an integral domain. Show that there is an $f \in R \setminus \mathfrak{p}$ such that R_f is an integral domain where $R_f = S^{-1}R$ with $S = \{1, f, f^2, f^3, \ldots\}$.

Exercise 4. Let k be an algebraically closed field. Consider the affine variety $V=k^2$ (with coordinates x,y), and the affine variety $W=k^2$ (with coordinates s,t). Suppose $\varphi:V\to W$ is a morphism, and denote by $R\subseteq k[x,y]$ the image of the induced ring homomorphism $\tilde{\varphi}:k[s,t]\to k[x,y]$. For each of the following statements, give a proof or a counterexample.

- (1) If φ has Zariski dense image, then φ is surjective.
- (2) If k[x,y]/R is an integral extension of rings, then φ is surjective.

Exercise 5. For every integer $n \geq 2$, do the following. Find all the primes p such that $GL_n(\mathbb{Q})$ contains an element of order p; and describe the rational canonical form of every element of order p in $GL_n(\mathbb{Q})$.

Exercise 6. Let R be a commutative ring. Suppose M is a projective R-module. Prove that M is flat.

Exercise 7. Let $R = \mathbb{Q}[x,y]$ be a polynomial ring and $M = \mathbb{Q}[s,t]$ be an R-module via \mathbb{Q} -algebra homomorphism $\phi \colon R \to M$ given by $\phi(x) = s$ and $\phi(y) = st$. Compute $\operatorname{Tor}_i^R(M,R/(x,y))$ and $\operatorname{Ext}_R^i(M,R/(x,y))$ for all integers $i \geq 0$.

Exercise 8. Let R be a commutative ring with an ideal I satisfying $I^n=(0)$ for some integer $n\geq 1$. Let $f\colon M\to N$ be an R-module homomorphism such that the induced homomorphism

$$\overline{f}: M/IM \to N/IN$$

is surjective. Prove that f is surjective.