Algebra qualifying exam
 June 1, 2011

1. Classify the groups of order 105 , up to isomorphism, and give a presentation of each group.
2.

a) Compute $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Z} / 6 \mathbb{Z}, \mathbb{Z} / 15 \mathbb{Z} \oplus \mathbb{Z} / 15 \mathbb{Z})$ for all i.
b) Compute $\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z} / 6 \mathbb{Z}, \mathbb{Z} / 15 \mathbb{Z} \oplus \mathbb{Z} / 15 \mathbb{Z})$ for all i.
3. Let W denote the unique irreducible two dimensional complex representation of the symmetric group S_{3}. Determine the dimensions and multiplicities of the irreducible constituents of $\operatorname{Ind}_{S_{3}}^{S_{4}} W$.
4. Suppose R is a commutative local ring, and M is a finitely generated R-module. Prove that M is projective if and only if M is free. Hint: you may use any form of Nakayama's Lemma you like, provided you first state it correctly.
5. Let $f \in \mathbb{Z}[x]$ be an irreducible monic polynomial, let K be a splitting field of f and let $\alpha \in K$ be a root of f. Assume the Galois group $\operatorname{Gal}(K / \mathbb{Q})$ is abelian.
a) Prove that $K=\mathbb{Q}(\alpha)$.
b) Assume there is a prime p such that the image of f in $\mathbb{F}_{p}[x]$ is irreducible. Determine the structure of $\operatorname{Gal}(K / \mathbb{Q})$.
6. Let $K=\mathbb{C}(x)$ be the field of rational functions in one variable x. Fix an integer $n \geq 2$ and let $F \subset K$ be the field of rational functions fixed by the two automorphisms

$$
\sigma: x \mapsto e^{2 \pi i / n} x, \quad \tau: x \mapsto x^{-1}
$$

a) Determine the structure of the Galois group $\operatorname{Gal}(K / F)$.
b) Show that $F=\mathbb{C}(t)$, where $t=x^{n}+x^{-n}$, and determine the minimal polynomial of x over F.
7. Show that every finite subgroup of $\mathrm{GL}_{2}(\mathbb{Q})$ has order $2^{a} 3^{b}$ for some a and b.
8. Let F be a subfield of \mathbb{C} that is finite and Galois over \mathbb{Q}. Suppose $\alpha \in F$ is an algebraic integer with the property that every Galois conjugate has complex absolute value 1. Prove that α is a root of unity. [Hint: show that the set of all such α in F is finite.]

