Algebra qualifying exam
 September 6, 2011

There are eight problems. All problems have equal weight. Show all of your work.

1. For which primes p does there exist a nonabelian group of order $4 p$? For each such prime give an example of such a group.
2. Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{11}\right)$ be the group of 2×2 invertible matrices over the field of 11 elements.
a) Show that the elements of order three in G form a single conjugacy class in G.
b) Find the number of Sylow 3 -subgroups of G.
3. Let G be a cyclic group of order m and let p be a prime not dividing m.
4. Construct all of the simple modules over the group ring $\mathbb{F}_{p}[G]$.
5. Give the number of simple $\mathbb{F}_{p}[G]$-modules and their dimensions as \mathbb{F}_{p}-vector spaces, in terms of p and m.
6. Suppose R is a commutative ring, and that

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

is an exact sequence of R-modules. Prove that B is Noetherian if and only if both A and C are Noetherian.
5. Let $K \subset \mathbb{C}$ be the splitting field over \mathbb{Q} of the cyclotomic polynomial

$$
f(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6} \in \mathbb{Z}[x] .
$$

Find the lattice of subfields of K and for each subfield $F \subset K$ find polynomial $g(x) \in \mathbb{Z}[x]$ such that F is the splitting field of $g(x)$ over \mathbb{Q}.
6. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree five with exactly three real roots, and let K be the splitting field of f. Prove that $\operatorname{Gal}(K / \mathbb{Q}) \simeq S_{5}$.
7. Let k be a field, and let $R=k[x, y] /\left(y^{2}-x^{3}-x^{2}\right)$.
a) Prove that R is an integral domain.
b) Compute the integral closure of R in its quotient field. [Hint: Let $t=\bar{y} / \bar{x}$, where \bar{x} and \bar{y} are the images of x and y in R.]
8. Let p be a prime and let G be the group of upper triangular matrices over the field \mathbb{F}_{p} of p elements:

$$
G=\left\{\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]: x, y, z \in \mathbb{F}_{p}\right\}
$$

Let Z be the center of G and let $\rho: G \rightarrow \mathrm{GL}(V)$ be an irreducible complex representation of G. Prove the following.
a) If ρ is trivial on Z then $\operatorname{dim} V=1$.
b) If ρ is nontrivial on Z then $\operatorname{dim} V=p$.
[Hint: Consider the subgroup of matrices in G having $y=0$.]

