Algebra qualifying exam September 6, 2011

There are eight problems. All problems have equal weight. Show all of your work.

1. For which primes p does there exist a nonabelian group of order 4p? For each such prime give an example of such a group.

- **2.** Let $G = GL_2(\mathbb{F}_{11})$ be the group of 2×2 invertible matrices over the field of 11 elements.
 - a) Show that the elements of order three in G form a single conjugacy class in G.
 - b) Find the number of Sylow 3-subgroups of G.
- 3. Let G be a cyclic group of order m and let p be a prime not dividing m.
 - 1. Construct all of the simple modules over the group ring $\mathbb{F}_p[G]$.
 - 2. Give the number of simple $\mathbb{F}_p[G]$ -modules and their dimensions as \mathbb{F}_p -vector spaces, in terms of p and m.
- 4. Suppose R is a commutative ring, and that

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

is an exact sequence of R-modules. Prove that B is Noetherian if and only if both A and C are Noetherian.

5. Let $K \subset \mathbb{C}$ be the splitting field over \mathbb{Q} of the cyclotomic polynomial

 $f(x) = 1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} \in \mathbb{Z}[x].$

Find the lattice of subfields of K and for each subfield $F \subset K$ find polynomial $g(x) \in \mathbb{Z}[x]$ such that F is the splitting field of g(x) over \mathbb{Q} .

6. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree five with exactly three real roots, and let K be the splitting field of f. Prove that $\operatorname{Gal}(K/\mathbb{Q}) \simeq S_5$.

- 7. Let k be a field, and let $R = k[x, y]/(y^2 x^3 x^2)$.
 - a) Prove that R is an integral domain.
 - b) Compute the integral closure of R in its quotient field. [Hint: Let $t = \bar{y}/\bar{x}$, where \bar{x} and \bar{y} are the images of x and y in R.]
- 8. Let p be a prime and let G be the group of upper triangular matrices over the field \mathbb{F}_p of p elements:

$$G = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} : x, y, z \in \mathbb{F}_p \right\}.$$

Let Z be the center of G and let $\rho: G \to GL(V)$ be an irreducible complex representation of G. Prove the following.

- a) If ρ is trivial on Z then dim V = 1.
- b) If ρ is nontrivial on Z then dim V = p. [Hint: Consider the subgroup of matrices in G having y = 0.]