Algebra Qualifying Exam Fall 2015 3 hours

1. Classify groups of order 55 up to isomorphism. Give a presentation for each of the groups in your classification.

- **2.** Let $R = \mathbb{C}[X, Y]$ and consider the ideal I = (X, Y) as an *R*-module.
 - (a) Construct an exact sequence of R-modules

$$0 \to R \to R \oplus R \to I \to 0.$$

- (b) Prove that the sequence you constructed is not split.
- **3.** Consider the ideal

$$I = (X^2 - Y, Y^2 - X) \subset \mathbb{C}[X, Y].$$

Find all maximal ideals of the quotient $\mathbb{C}[X,Y]/I$. (Find means give a set of generators.)

4. How many Sylow *p*-subgroups are there in $\operatorname{GL}_2(\mathbb{F}_p)$?

5. Suppose K is an extension of \mathbb{Q} of degree n, and let $\sigma_1, \ldots, \sigma_n : K \to \mathbb{C}$ be the distinct embeddings of K into \mathbb{C} . Let $\alpha \in K$. Regarding K as a \mathbb{Q} -vector space, let $\phi : K \to K$ be the linear transformation $\phi(x) = \alpha x$. Show that the eigenvalues of ϕ are $\sigma_1(\alpha), \ldots, \sigma_n(\alpha)$.

- 6. Let $\zeta = e^{\pi i/3} \in \mathbb{C}$.
 - (a) Compute the minimal polynomial of ζ over \mathbb{Q} .
 - (b) Find all prime ideals $\mathfrak{p} \subset \mathbb{Z}[\zeta]$ satisfying $\mathfrak{p} \cap \mathbb{Z} = 7\mathbb{Z}$, and give generators for these ideals.
- **7.** Fix $a, b, c \in \mathbb{Q}$, and let K/\mathbb{Q} be the splitting field of

$$f(x) = x^{6} + ax^{5} + bx^{4} + cx^{3} + bx^{2} + ax + 1 \in \mathbb{Q}[x].$$

Show that $\operatorname{Gal}(K/\mathbb{Q}) \subset S_6$ is contained in the centralizer of a permutation with cycle type (2, 2, 2).

8. Let R be a ring with identity, and let M be a left R-module. Prove that the following are equivalent:

- (i) there is a chain of submodules $M = M_0 \supset M_1 \supset \cdots \supset M_n = (0)$ such that each quotient M_j/M_{j+1} is a simple *R* module (*simple* means no proper nonzero submodules)
- (ii) M satisfies both the ascending chain condition and the descending chain condition for submodules.
- Hint: For (i) \implies (ii), use induction on n.