1. Let $\gamma_{r}(t)=r e^{i t}$ be the circle of radius $r$. Describe $\int_{\gamma_{r}} \frac{1}{\sin (z)} d z$ as a function of $r$. (Take the domain of this function to be positive real numbers for which $\sin (r) \neq 0$. Give an exact formula if you can, otherwise give any description you can of what this function is like.)
2. Let $U=\{x+i y \in \mathbf{C} \mid-\pi<x<\pi$ and $-\cos (x)<y<\cos (x)\}$. Draw a picture of $U$. Let $V \supset U$ be a disk of radius 4. Can a holomorphic function $f: U \rightarrow \mathbf{C}$ have $f(U)=V$ ? Can a holomorphic function $f: \mathbf{C} \rightarrow \mathbf{C}$ have $f(U)=V$ ? Give reasons.
3. Fix a complex number $a$. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be the function defined by $f(z)=z^{3}+a z+1$. Determine the largest open subset of $\mathbf{C}$ on which $f$ is conformal.
4. Suppose that $g: \mathbf{C} \rightarrow \mathbf{C}$ is holomorphic with Taylor series $g(z)=a_{0}+a_{1} z+$ $a_{2} z^{2}+\cdots$. Suppose furthermore that $|g(z)| \leq 1$ whenever $|z| \leq 1$. Show that $\left|a_{k}\right| \leq 1$ for all $k$.
5. Determine all biholomorphisms (i.e. holomorphic automorphisms) $f: \mathbf{C} \cup$ $\{\infty\} \rightarrow \mathbf{C} \cup\{\infty\}$ that have $f(0)=0$ and $f(\infty)=\infty$. Here $\mathbf{C} \cup\{\infty\}$ denotes the Riemann sphere, i.e. the extended complex plane.
