Real Analysis Qual

June 10, 2016

Problem 1. Let ~ be the equivalence relation on the interval [0,1] given by $x \sim y$ iff $x - y \in \mathbb{Q}$. Choose one element from each equivalence class (using the Axiom of Choice). Let $A \subset [0,1]$ denote the set of these chosen elements. For a given set $B \subset \mathbb{R}$, define $B + x = \{y + x \mid y \in B\}$.

- (a) Show that the sets A + q, for $q \in \mathbb{Q} \cap [-1, 1]$, are disjoint.
- (b) Show that $[0,1] \subset \bigcup_{q \in \mathbb{Q} \cap [-1,1]} (A+q) \subset [-1,2].$
- (c) Show that A is not Lebesgue measurable (supposing it were, what would its measure be?).

Problem 2. Suppose (X, \mathcal{A}, μ) is a measure space.

- (a) What does it mean for a function $f: X \to \mathbb{R}$ to be measurable?
- (b) State the Monotone Convergence Theorem for this measure space.
- (c) Prove Fatou's Lemma, which states that

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n$$

for any sequence (f_n) of non-negative, measurable functions. To get started, let $g_n = \inf_{i \ge n} f_i$. Observe these are increasing. What is their limit? Observe that

$$\int g_n \le \inf_{i \ge n} \int f_i$$

(why?). Finish the proof.

Problem 3. Suppose μ is a positive measure on (X, \mathcal{A}) , with $\mu(X) < \infty$. Fix $E_1, \ldots, E_n \in \mathcal{A}$ and $c_1, \ldots, c_n \in \mathbb{R}_{\geq 0}$. Define $\nu : \mathcal{A} \to [0, \infty]$ by

$$\nu(A) = \sum_{i=1}^{n} c_i \mu(A \cap E_i).$$

- (a) Show that ν is a measure.
- (b) Show that ν is absolutely continuous with respect to μ .

- (c) State the Radon-Nikodym theorem with respect to ν and μ .
- (d) Find the Radon-Nikodym derivative $f = \frac{d\nu}{d\mu}$.

Problem 4.

- (a) Define the L^p norm on the measure space (X, \mathcal{A}, μ) .
- (b) What does it mean for $H : L^p(X, \mathcal{A}, \mu) \to \mathbb{R}$ to be a bounded linear functional?
- (c) Prove that a bounded linear functional is continuous with respect to the metric topology on $L^p(X, \mathcal{A}, \mu)$ induced by the L^p norm.

Complex Analysis Qualifying Exam – Spring 2016

Please answer the following problems. Explain your argument carefully – if you refer to a well-known theorem from class, please state the theorem precisely and explain why it applies.

Notation: \mathbb{D} = open unit disk, $\mathbb{C}^* = \mathbb{C} - \{0\}$, \mathbb{H} = upper half plane.

- 1) Find a holomorphic function f on \mathbb{C}^* such that
 - f is a pointwise limit of polynomial functions, but
 - f is not a uniform limit of polynomial functions (that is, there is no sequence of polynomials that converges to f uniformly on compact subsets of \mathbb{C}^*).

Prove both assertions for your choice of f.

2) Find a biholomorphism between \mathbb{H} and the region

$$U = \{ z \in \mathbb{C} ||z - 1| < 1, |z - i| < 1 \}.$$

It is enough to write down explicitly functions whose composition yields a biholomorphism from \mathbb{H} to U or from U to \mathbb{H} .

- 3) Let $U \subsetneq \mathbb{C}$ be a simply connected region. For any point $a \in U$, the Green function of U corresponding to a is defined as $g_a(z) = \log |\phi(z)|$, where $\phi: U \to \mathbb{D}$ is a biholomorphism sending a to 0.
 - a) Explain why g_a is well-defined. That is, explain briefly why such a map ϕ is guaranteed to exist, and then show carefully that g_a is independent of the choice of ϕ .
 - b) Prove that for any $a, b \in U$ we have $g_a(b) = g_b(a)$.
- 4) Fix a lattice Λ and define the Weierstrass σ -function:

$$\sigma(z) = z \prod_{\omega \in \Lambda - \{0\}} \left(1 - \frac{z}{\omega} \right) \exp\left(\frac{z}{\omega} + \frac{z^2}{2\omega^2} \right)$$

- a) Verify that the product converges to an odd holomorphic function with a simple zero exactly at every lattice point.
- b) Show that

$$\frac{d}{dz}\frac{\sigma'(z)}{\sigma(z)} = -\wp(z)$$

where $\wp(z)$ is the Weierstrass \wp -function

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda - \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

Justify carefully any techniques you use.