
Analysis Qualifying Exam Spring 2011

Please answer all 6 problems from each section and show your work. Each problem

is worth 30 points.

SECTION 1: REAL ANALYSIS

In your proofs, you may use any major theorem, except the fact you are trying to

prove, or a mere variant of it. State clearly what theorems you use. Good luck.

1 Let fn : X → R be (X,µ) measurable functions such that 0 ≤ fn ≤ 1 and µ is a

finite measure. Prove that if

lim
n→∞

�

X
fn dµ = µ(X)

then fn → 1 a.e.

2 Let f be Lebesgue integrable on (0, a) and g(x) =
� a

x t−1f(t)dt.
Prove that g is Lebesgue integrable on (0, a) and

� a
0 g(x)dx =

� a
0 f(x)dx.

3 Let µ, ν be finite measure on (X,M) with ν << µ. Define λ = µ+ ν and f =
dν
dλ .

Prove that 0 ≤ f < 1 µ−a.e. and
dν
dµ =

f
1−f .

4 Let E be a Borel set in Rn
and m denote Lebesgue measure on Rn

. Let

DE(x) = lim
r→0

m(E ∩B(r, x))

m(B(r, x))

whenever the limit exists. Prove that DE(x) = 1 for a.e. x ∈ E and DE(x) = 0 for

a.e. x ∈ Ec
.

5 Let X,Y be Banach spaces and T : X → Y a linear map such that f ◦ T ∈ X∗

for all f ∈ Y ∗
. Prove that T is bounded.

6

a) Prove the Minkowski inequality ||f + g||p ≤ ||f ||p + ||g||p for 1 ≤ p < ∞.

b) Show that Lp
(X) is complete for 1 ≤ p < ∞.
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SECTION 2: COMPLEX ANALYSIS

In your proofs, you may use any theorem from the syllabus for Complex Analysis,

except of course you may not use the fact you are trying to prove, or a mere variant

of it. State clearly what theorems you use. Good luck.

E is the open unit disc. N is the set of positive integers.

1 TRUE or FALSE. If TRUE, prove it; if FALSE, give a counterexample. Let f be

an analytic function on E− {a}.

a) f has a removable singularity at a implies that ef
has a removable singularity

at a.

b) f has a pole at a implies that ef
has a pole at a.

c) f has an essential singularity at a implies that ef
has an essential singularity

at a.

2 Let u : C → R be harmonic. You may assume u is C∞.

a) Show there exists v : C → R harmonic such that u + iv is entire.

b) Suppose u is bounded. Must u be constant? Proof or counterexample.

3 Let f : C → C be analytic, nonconstant and doubly periodic with periods ω1, ω2.

a) Prove that ω2/ω1 /∈ R.

b) Let Pa be a period domain such that no zero or pole of f lies on its boundary

∂Pa. Interpret

1

2πi

�

∂Pa

zf �(z) dz

f(z)

in terms of the zeros and poles of f and prove that it is an element of Zω1 ⊕ Zω2.
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4 Let s ∈ C and consider
∞�

n=1

n−s.

a) Prove that the sum converges absolutely and uniformly in the set {s | �(s) ≥
δ} for any δ > 1.

b) Assume the result in part a). Then the sum defines an analytic function on

U := {s | �(s) > 1} which we will call ζ(s). Prove that for s ∈ U ,

Γ(s)ζ(s) =

� ∞

0

xs−1

ex − 1
dx.

Be sure to justify any interchange of infinite sum and integral you perform.

Hint: use an integral formula for Γ(s).
c) Using the formula in b) and Cauchy’s theorem, it is not hard to prove that

ζ(s) = −Γ(1− s)

2πi

�

C

(−z)
s−1

ez − 1
dz

where (−z)
s−1

is defined on the complement of the positive real axis to be given

by exp(s− 1) log(−z) with −π < � log(−z) < π and where the contour C goes just

above the positive real axis, circles around 0 in a little circle and comes back just

below the positive real axis. Assume this formula. (You need not prove it.) Prove

that ζ(s) can be extended to a meromorphic function on C whose only pole is a

simple pole at s = 1.

5 Use either residues or Cauchy’s Theorem to compute

� ∞

0

sin x

x
dx.

6 Let Rn be an arbitrary sequence of nonzero complex numbers such that |Rn| < 1

for all n.

a) Write down a convergent infinite series of functions that defines a meromorphic

function on C whose only poles occur at z =
√

n, n ∈ N, with residues Rn.

b) Prove your series converges away from the poles and defines an analytic func-

tion there.


